BLECH -
A SAFE SYNCHRONOUS LANGUAGE
FOR EMBEDDED REAL-TIME ROGRAMMING

FRANZ-JOSEF GROSCH

JOINT WORK WITH FRIEDRICH GRETZ AND JENS BRANDT

& BOSCH

Bosch — a global company
Research and development 2017

» 62500 associates in research and
development

» 125 engineering locations world-wide

» € 7.3 bn research and development
expenditure

» € 300 m invested in artificial intelligence

2 Franz-, Josef Grosch | 2018-09-11

Bosch — a Global Company
Four Business Sectors

fy el =

Mobility Solutions Industrial Technology Energy & Building Consumer Goods
Technology
» One of the world’s largest » Leading in drive and control » One of the leading » Leading supplier of power
suppliers of mobility and process technology manufacturers of security & tools and accessories
solutions communication technology

» Leading supplier of

» Leading manufacturer of household appliances
energy-efficient heating
products and hot-water
solutions

4 Franz-Josef Grosch | 2018-09-11

Bosch technology to enhance quality of life
Example products

» ESP® — the Bosch anti-skidding system » Engine Control — Gasoline direct injection

! ¥ y
B P T~

s — the Bosch Ixo

o

» Power tool

5 Franz-Josef Grosch | 2018-09-11 /m\\ BOSCH
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. “ ,,D

Bosch “Things” in a connected world
The importance of embedded software

:f:,ﬁ:m_. » Bosch's biggest strength in the loT
< 1./90 § ecosystem are the Bosch “Things”
developers -TTT
x' @ = » These devices and physical products cover a
Q \ digital services multitude of domains
ﬁ__,--"
|: T o » Each with high market penetration typically

Q g among the TOP 3

» “Bosch is a giant in embedded software”

|
\Of —~ (Dr. Volkmar Denner, CEO)
s — I I I I
innovation new business
6 Franz- Josef Grosch | 2018-09-11 @ BOSCH

The structure of embedded software
Timing behaviour expressed via the environment

» “One-step” functions ...

» ... composed in operating system tasks

» ... activated periodicly (time-triggered),
sporadicly (event-triggered)
or even rate-adaptive

» ... scheduled according to priorities

More details: Real world automotive benchmark for free,
Kramer et al., 2015

Franz- Josef Grosch | 2018-09-11

() | no inputs, no outputs, operates on global variables
() | g() - sequentially ordered
IRQ 10 | k() | 1() repeated on clock-tick or

on interrupt
10 msec | () | g8() - P

8: 1

msec | n()

5: IRQ 10

high priority task pre-empts lower,
k() L .
task switch is a function call,

2: 10 msec | 8() only one stack for all tasks

& BOSCH
e

The structure of embedded software
Questions causing trouble

» One-step functions » Single task composition » Execution of parallel tasks
» How do we manage state » Which function is writing » How is the dataflow between
between two activations? what variable and when? tasks?
» How do we reason about the » What is a suitable order of
behaviour of a function over functions in a task?

» How do we reason about
combinations of functions in

» How do we reason about parallel tasks?
combinations of functions in
a task?

repeated activations?

Do we need a programming language better suited to embedded requirements?

Franz- Josef Grosch | 2018-09-11

@ BOSCH

Why a new language?
Build a better tool!

L
O
0
O
(1]

Franz-Josef Grosch | 2018-09-11

Should the language be synchronous?
The synchronous paradigm

O

[e
'

continuous
hardware

discrete
software

Runtime
environment

A

1

A

Synchronous
program

Franz-Josef Grosch | 2018-09-11

» Environment communicates asynchronously with
physical world, drives synchronous programs

» A program is executed is steps
— A sequence of steps is called a thread (we prefer trail)

» Assume a step takes no time (happens
instantaneously)
— No change of input data throughout computation

» Sequences of steps can be composed
concurrently

— Accesses to shared data happen in a deterministic,
causal order

@ BOSCH

Is a synchronous language “better”’ than C?
An experiment with Céu

GATEWAY
Internet Connectivity Domain Traditional Embedded Domain
oo nn oI P IIER I DAl T L T T L T
1 ! I ' :
i request T request ™ el Emg -
! Web Server| | . | EMS Driver : ! —
: HTTP , EMS 1 frame fieldbus |
1 response | response :
1 | 1 |
- .] U I

Function-Oriented Decomposition for Reactive Embedded Software,

www.ceu-lang.org Matthias Terber, SEAA 2017

Franz-Josef Grosch | 2018-09-11

@ BOSCH

Do we need a new synchronous language?
Available alternatives do not fulfill our requirements

» Céu purely event-triggered, no causality, soft-realtime

» Esterel no longer supported, focus on control flow and coordination
» Lustre not imperative, difficult to transfer as a textual language

» Quartz focus too broad: specification of hardware and software

Create a safe synchronous imperative language - Blech

Franz- Josef Grosch | 2018-09-11

Goal: Synchronous control for an imperative language
Express behaviour over time

function times2 (x: int32) returns int32 > Start with a safe imperative core language
return x * 2 » Focus on readability
end » Safe saturation arithmetic, precisely sized types

» No global variables
activity A (inA: int32) (outA: int32)
repeat

await true » Add a statement to execute in steps

OUtA = times2(inA) » await <condition/event/clock tick>
if outA >= 0 then » await true & await tick
await inA > 0
end » Introduce two kinds of subprograms
outA = times2(inA) » function - one step, no await
end » activity — multiple steps, at least one await

end

» Introduce two kinds of parameter lists
» Inputs — read only
» Outputs — read/write

Franz-Josef Grosch | 2018-09-11

How is this executed?
Stackless execution in macro steps

inA outA
function times2 (x: int32) returns int32 7 14
return x * 2 ti
end
-1 14
activity A (inA: int32)(outA: int32) Li+a
repeat
await true po 0 10
outA = times2(inA) e
if outA >= 0@ then
await 1nA > © tits -2 -8
end
outA = times2(inA)

end N

A standard imperative core language implies .
) . time
Sequentially Constructive Concurrency,

R. v. Hanxleden et al., 2013 steps
Franz-Josef Grosch | 2018-09-11 @ BOSCH

end

How is this compiled?
Functions called on every step

// C-like pseudocode

o

void step_of_A () {
void mainloop () { // restore code location
step_of_A(); /////,

e \\\\\\\‘ // check await condition
} /

// execute corresponding computation <+—

//T//a// save location for next reaction

S—

Boilerplate state management code “Business” logic
Hard to code manually Interesting part of the program
15 Franz- Josef Grosch | 2018-09-11 /@ BOSCH

Combine behaviours over time
Concurrent composition with improved readability and flexibility

» Add a control flow statement for concurrent composition
activity A(inA: int32) (outA: int32) » Focus on readability: cobegin ... with ... with ... end
» Usable as an orthogonal statement

end

» Entering cobegin blocks (also called fork)
activity B(inB: int32) (outB: int32) » Execute multi-step trails (also called threads) concurrently
end

» Exiting cobegin blocks (also called join)

activity main() » Terminate all trails in the same step

var x: int32 » Strong trails run to their end, weak trails can be terminated early

var y: 1int32

cobegin weak » Execute in causal order of statement sequences

~run A(x) (y) » Concurrent cobegin blocks compile to sequential code
with » Causality analysis does not look into activities and functions
run B(y) (x)
end
end » Express parallel and/or

» cobegin ... with ... end // parallel and
» cobegin weak ... with weak ... end // parallel or

Franz-Josef Grosch | 2018-09-11

@ BOSCH

Deterministic sequential execution of concurrent code
Non-global causality analysis

activity main() activity main ()
var x: int32 var x: 1nt32
var y: int32 var y: int32
cobegin weak cobegin weak
run A(x) (y) Error: Solve causality cycle run A(x) (y)
with :>< causality > with
run B(y) (x) cycle run B(prev y) (x)
end ~ end T
end end
17 Franz-Josef Grosch | 2018-09-11 @ BOSCH

Software structure and design
Structured data types, references, objects, modules

struct Value
var first: int32 » Introduce two kinds of types

var second: float32
» value types

end
» reference types
ref struct MyType
var flag: bool > Introduge structurgd value.types
var ref value: Value // initialised at declaration » Atomic for causality analysis
with , , , » Useful for data exchange
const c: int32 = 42 // compile time constant .
param p: float32 = 9.81 // hex file constant » prev and next allowed, shallow copying
enum Color // scoped type declaration » |Introduce reference types
Red Green Blue . . .
end » Atomic for causality analysis
function f() returns int32 // static subprogram » Useful for structuring
end . . .
mutating activity mt:actMethod() // method subprogram > Non CyCIIC.dePenden.CI?S reqUIred
mt.value.first = f() // deref 'value' taken automatically » Bound during instantiation
g o » Introduce modules
» Unit of separate compilation
var v: Value = {first = 1} // second gets default value » Non-cyclic import hierarchy required

var mt: MyType =
{flag = true, value = v} // ref 'v' taken automatically

Franz-Josef Grosch | 2018-09-11

Write things once - preemptions and hierarchy
ABRO - the synchronous “Hello world”

activity abro(a: bool, b: bool, r: bool) (o: bool)

repeat
o = false
abort when r before // watching
cobegin
await a
with
await b
end
o = true
await false // halt
end
end

end

“Output O gets true as soon as both inputs A and B have been true.

The behaviour is always restarted if reset input R is true.

2 O Franz-Josef Grosch | 2018-09-11

Modes are more important than pure state machines
True tail calls — an efficient way to implement modes

Any flowchart can be written as a program which
uses only sequencing, conditionals, and procedure

calls.
PROCEDURE A; BEGIN <processing); CALL B END;

PROCEDURE C; IF {predicate)
THEN CALL D ELSE CALL E;

» Objections of ‘77

(1) It requires recursion to implement loops in
the flowchar;. B
(2) Procedure calls are expensive.

They shouldn't be!

(3) The chain of procedure calls will keep
pushing stack, and the stack will overflow.

> 7 independent flags (4) This style of programming is unnatural:

» 128 possible combinations "That's not what procedures are for!"
This is largely a matter of taste.

Steele, Jr., Guy Lewis. (1977). Debunking the “expensive procedure call” myth, or procedure call

| implementations can be considered harmful, or Lambda, the ultimate GOTO
Franz- Josef Grosch | 2018-09-11
© BOSCH

T

» 23 permissible states

Implementation of modes
Recursive tail runs - simple and effective

rec activity abro(a: bool, b: bool, r: bool)

(o: bool)

o = false
await a or b
if a and b then

return run emitO(a, b, r) (o)
elseif a then

return run aSeen(a, b, r) (o)
elseif b then

return run bSeen(a, b, r) (o)

end
end
and activity aSeen(a: bool, b: bool, r:
(o: bool)
await b or r

if r then
return run abro(a, b, r) (o)
elseif b then
return run emitO(a, b, r) (o)
end
end

2 2 Franz-Josef Grosch | 2018-09-11

bool)

and

and

activity bSeen(a: bool, b: bool, r: bool)
(o: bool)
await a or r
if r then
return run abro(a, b, r) (o)
elseif a then
return run emitO(a, b, r) (o)
end
end

activity emitO(a: bool, b: bool, r: bool)
(o: bool)
o = true
await r
return run abro(a, b, r) (o)
end

Clocks — a way to express multi-form time
Speed - the other synchronous “Hello world”

\ 4

cm

‘both

a

secC

‘start clock

clock cm
clock sec
clock both = cm join sec

2 3 Franz-Josef Grosch | 2018-09-11

activity countingCmBetweenSeconds() (distance: int32) on both
repeat await tick // any tick
if tick cm then
distance = distance + 1
elseif tick sec then
distance = 0
end
end
end

activity updatingSpeed(distance:int32) (speed: int32) on sec
repeat await tick sec
speed = distance
end
end

activity main() on both
var distance: int32 = 0
var speed: int32 = 0
cobegin
run countingCmBetweenSeconds () (distance)
with
run updatingSpeed(distance) (speed)
end
end

Parallel programming with clocks
Logical execution time and clock refinement

clock cm
clock sec
clock both = cm join sec

var speed: int32 = 0 on sec
var distance: int32 = 0 on sec

“‘ activity startup() () on sec
[

-
[

| | :cmjoin sec

_ cobegin
distance % z } next run countingCmBetweenSeconds
() (next distance) on both
with

run updatingSpeed
(distance) (speed) on sec

:

sec

end
end

From control models to real-time code using Giotto, Clock refinement in imperative synchronous languages,
Henzinger et al., 2003 Gemiunde, Brandt, Schneider, 2013

24 Franz-Josef Grosch | 2018-09-11

“Bosch is a giant in embedded software” (Dr. V. Denner, CEO)
Wishlist for an embedded real-time programming language

BOSCH

Core Business
“Things” driven by embedded software

Hybrid: Time-driven and event-driven
Predictable and deterministic

Synchronous concurrency

Hard real-time

Bounded memory usage and execution time
Easy integration of C code

L o~

Prepared for multi-core

Explicit control of deployment and variable placement
Compile-time mechanisms for structuring and variants
Safe shared memory

Safe type system

Expressive and productive

vV VvV VvV VvV vV VvV VvV VYVvVYy

A “real cool” development environment

2 5 Franz-Josef Grosch | 2018-09-11

Elevate embedded real-time programming

Bridging the gap between models and C code

Analysis & Modelling

Design & Implementation
+ Real-time requirements

* Reactive concerns

» Software design

e Built-in concurrency

e Deterministic parallelism

Deployment

Bosch products

2 6 Franz- Josef Grosch | 2018-09-11

Vil

. . L® o ® @
Simulink® MoDE'LI’'tA Scade ':g E‘DE:J
ASCET-DEVELOPER ASCET-CONGRA
Blech
Legacy - Runtime
Software / | \ & Drivers
C Task C Task C Task C Task C Task

Simulation &
Transformation

Verification & Testing
e Assertion checking

e Unit testing

» Debugging

* Closed-loop simulation

Hardware-in-the-loop

Field testing

@ BOSCH

Elevate embedded real-time programming
Our embedded software vision

» Take care of multi-disciplinary engineering

» Express timing behavior in the program (not in the environment)

» Enable clean embedded software architectures

» Re-enable reasoning about parallel programs

» Improve productivity, agility, maintainability, testability, modularity, abstraction

» Support and attract software professionals

Franz- Josef Grosch | 2018-09-11

I”

First steps on a “cool” development environment
A Blech Language Server used with Visual Studio Code

E BoCSEexampleble %

4 OPEN EDITORS calc1()
return 77

calc2()

BoCSEexampie.bic Bie: pecheckervalid — 2 references

ion calc2() ret
urn -342

A (inA:
at
it
outA = calci()
if outA @ then
it inA > @

F

t inA <= 5
i
outA = gale2()

4 ourime . i

return -342

A (inA:

eat

if outA == @ f1ed
await inA >
*.

- await inA
I CompoundTypes* & @0 A0 [AShare In13,Col26 Spacesd UTF-E CRIF Blech @ M

Franz-Josef Grosch | 2018-09-11

BOSCH

Where we stand
... and where to go

» We have a clear vision of Blech’s features ... we are open for discussion
» We are a small team ... we are open for cooperation
» We implement the compiler, the language ... in the mid-term we plan to go open-source

server and the build system in F#

Franz- Josef Grosch | 2018-09-11

THANK
YOU

www.bosch.com

= -
& BOSCH I

	��Blech - �A Safe Synchronous Language�fOR Embedded Real-time rogramming ����Franz-Josef Grosch��joint work with FriedRich Gretz and Jens Brandt
	Research and development 2017
	Four Business Sectors�
	Example products
	The importance of embedded software
	Timing behaviour expressed via the environment
	Questions causing trouble
	Build a better tool!
	The synchronous paradigm
	An experiment with Céu�
	Available alternatives do not fulfill our requirements
	Express behaviour over time
	Stackless execution in macro steps
	Functions called on every step
	Concurrent composition with improved readability and flexibility
	Non-global causality analysis
	Structured data types, references, objects, modules
	ABRO – the synchronous “Hello world”
	True tail calls – an efficient way to implement modes
	Recursive tail runs - simple and effective
	Speed – the other synchronous “Hello world”
	Logical execution time and clock refinement
	“Bosch is a giant in embedded software” (Dr. V. Denner, CEO)�Wishlist for an embedded real-time programming language
	Bridging the gap between models and C code
	Our embedded software vision
	A Blech Language Server used with Visual Studio Code
	… and where to go
	Thank�You

