
BLECH -
A SAFE SYNCHRONOUS LANGUAGE
FOR EMBEDDED REAL-TIME ROGRAMMING

FRANZ-JOSEF GROSCH

JOINT WORK WITH FRIEDRICH GRETZ AND JENS BRANDT

Bosch – a global company

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

2

Research and development 2017

 62500 associates in research and
development

 125 engineering locations world-wide

 € 7.3 bn research and development
expenditure

 € 300 m invested in artificial intelligence

Bosch – a Global Company

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

4

Four Business Sectors

Mobility Solutions

 One of the world’s largest
suppliers of mobility
solutions

Industrial Technology

 Leading in drive and control
and process technology

Energy & Building
Technology

 One of the leading
manufacturers of security &
communication technology

 Leading manufacturer of
energy-efficient heating
products and hot-water
solutions

Consumer Goods

 Leading supplier of power
tools and accessories

 Leading supplier of
household appliances

Bosch technology to enhance quality of life

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

5

Example products
 ESP® – the Bosch anti-skidding system  Engine Control – Gasoline direct injection

 Home appliances – Series 8 ovens  Power tools – the Bosch Ixo

Bosch “Things” in a connected world

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

6

The importance of embedded software
 Bosch's biggest strength in the IoT

ecosystem are the Bosch “Things”

 These devices and physical products cover a
multitude of domains

 Each with high market penetration typically
among the TOP 3

 “Bosch is a giant in embedded software”
(Dr. Volkmar Denner, CEO)

Timing behaviour expressed via the environment
 “One-step” functions … no inputs, no outputs, operates on global variables

… composed in operating system tasks sequentially ordered

… activated periodicly (time-triggered), repeated on clock-tick or
sporadicly (event-triggered) on interrupt
or even rate-adaptive

… scheduled according to priorities high priority task pre-empts lower,
task switch is a function call,
only one stack for all tasks

f() g()10 msec

k() l()IRQ 10

The structure of embedded software

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

7

f()

f() g() h()

2: 10 msec

5: IRQ 10

8: 1 msec

g()

k()

h()

n()

Real world automotive benchmark for free,
Kramer et al., 2015

More details:

The structure of embedded software

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

8

Questions causing trouble
 Single task composition

 Which function is writing
what variable and when?

 What is a suitable order of
functions in a task?

 How do we reason about
combinations of functions in
a task?

 Execution of parallel tasks

 How is the dataflow between
tasks?

 How do we reason about
combinations of functions in
parallel tasks?

One-step functions

 How do we manage state
between two activations?

 How do we reason about the
behaviour of a function over
repeated activations?

Do we need a programming language better suited to embedded requirements?

Why a new language?

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

9

Build a better tool!

Should the language be synchronous?

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

10

The synchronous paradigm

continuous
hardware

discrete
software

Runtime
environment

Synchronous
program

 Environment communicates asynchronously with
physical world, drives synchronous programs

 A program is executed is steps
‒ A sequence of steps is called a thread (we prefer trail)

 Assume a step takes no time (happens
instantaneously)

‒ No change of input data throughout computation

 Sequences of steps can be composed
concurrently

‒ Accesses to shared data happen in a deterministic,
causal order

Is a synchronous language “better” than C?

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

11

An experiment with Céu

Function-Oriented Decomposition for Reactive Embedded Software,
Matthias Terber, SEAA 2017www.ceu-lang.org

Do we need a new synchronous language?

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

12

Available alternatives do not fulfill our requirements

Céu purely event-triggered, no causality, soft-realtime

 Esterel no longer supported, focus on control flow and coordination

 Lustre not imperative, difficult to transfer as a textual language

Quartz focus too broad: specification of hardware and software

Create a safe synchronous imperative language - Blech

Goal: Synchronous control for an imperative language

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

13

Express behaviour over time
 Start with a safe imperative core language
 Focus on readability
 Safe saturation arithmetic, precisely sized types
 No global variables

 Add a statement to execute in steps
 await <condition/event/clock tick>
 await true  await tick

 Introduce two kinds of subprograms
 function – one step, no await
 activity – multiple steps, at least one await

 Introduce two kinds of parameter lists
 Inputs – read only
 Outputs – read/write

function times2 (x: int32) returns int32
return x * 2

end

activity A (inA: int32)(outA: int32)
repeat

await true
outA = times2(inA)
if outA >= 0 then

await inA > 0
end
outA = times2(inA)

end
end

How is this executed?

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

14

Stackless execution in macro steps

time
steps

inA

7

-1

5

-2

𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖+2

𝑡𝑡𝑖𝑖+3

function times2 (x: int32) returns int32
return x * 2

end

activity A (inA: int32)(outA: int32)
repeat

await true
outA = times2(inA)
if outA >= 0 then

await inA > 0
end
outA = times2(inA)

end
end

Sequentially Constructive Concurrency,
R. v. Hanxleden et al., 2013

A standard imperative core language implies

outA

14

14

10

-8

void step_of_A () {
// restore code location

// check await condition

// execute corresponding computation

// save location for next reaction
}

How is this compiled?

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

15

Functions called on every step
// C-like pseudocode

void mainloop () {
step_of_A();
...

}

Boilerplate state management code
Hard to code manually

“Business” logic
Interesting part of the program

Combine behaviours over time

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

16

Concurrent composition with improved readability and flexibility
 Add a control flow statement for concurrent composition
 Focus on readability: cobegin ... with ... with ... end
 Usable as an orthogonal statement

 Entering cobegin blocks (also called fork)
 Execute multi-step trails (also called threads) concurrently

 Exiting cobegin blocks (also called join)
 Terminate all trails in the same step
 Strong trails run to their end, weak trails can be terminated early

 Execute in causal order of statement sequences
 Concurrent cobegin blocks compile to sequential code
 Causality analysis does not look into activities and functions

 Express parallel and/or
 cobegin ... with ... end // parallel and
 cobegin weak ... with weak ... end // parallel or

activity A(inA: int32)(outA: int32)
...
end

activity B(inB: int32)(outB: int32)
...
end

activity main()
var x: int32
var y: int32
cobegin weak

run A(x)(y)
with

run B(y)(x)
end

end

activity main()
var x: int32
var y: int32
cobegin weak

run A(x)(y)
with

run B(y)(x)
end

end

Deterministic sequential execution of concurrent code

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

17

Non-global causality analysis

Error:
causality

cycle

activity main ()
var x: int32
var y: int32

cobegin weak
run A(x)(y)

with
run B(prev y)(x)

end
end

Solve causality cycle

Software structure and design

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

19

Structured data types, references, objects, modules
 Introduce two kinds of types
 value types
 reference types

 Introduce structured value types
 Atomic for causality analysis
 Useful for data exchange
 prev and next allowed, shallow copying

 Introduce reference types
 Atomic for causality analysis
 Useful for structuring
 Non-cyclic dependencies required
 Bound during instantiation

 Introduce modules
 Unit of separate compilation
 Non-cyclic import hierarchy required

struct Value
var first: int32
var second: float32

end

ref struct MyType
var flag: bool
var ref value: Value // initialised at declaration

with
const c: int32 = 42 // compile time constant
param p: float32 = 9.81 // hex file constant
enum Color // scoped type declaration

Red Green Blue
end
function f() returns int32 // static subprogram
end
mutating activity mt:actMethod() // method subprogram

mt.value.first = f() // deref 'value' taken automatically
end

end
...

var v: Value = {first = 1} // second gets default value
var mt: MyType =

{flag = true, value = v} // ref 'v' taken automatically

Write things once - preemptions and hierarchy

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

20

ABRO – the synchronous “Hello world”

R

R R
A B

A B / O

B / O A / O

activity abro(a: bool, b: bool, r: bool)(o: bool)
repeat

o = false
abort when r before // watching

cobegin
await a

with
await b

end
o = true
await false // halt

end
end

end

“Output O gets true as soon as both inputs A and B have been true.
The behaviour is always restarted if reset input R is true.

R

Modes are more important than pure state machines

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

21

True tail calls – an efficient way to implement modes

 7 independent flags
 128 possible combinations
 23 permissible states

 Objections of ‘77

Steele, Jr., Guy Lewis. (1977). Debunking the “expensive procedure call” myth, or procedure call
implementations can be considered harmful, or Lambda, the ultimate GOTO

Implementation of modes

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

22

Recursive tail runs - simple and effective
rec activity abro(a: bool, b: bool, r: bool)

(o: bool)
o = false
await a or b
if a and b then

return run emitO(a, b, r)(o)
elseif a then

return run aSeen(a, b, r)(o)
elseif b then

return run bSeen(a, b, r)(o)
end

end

and activity aSeen(a: bool, b: bool, r: bool)
(o: bool)

await b or r
if r then

return run abro(a, b, r)(o)
elseif b then

return run emitO(a, b, r)(o)
end

end

and activity bSeen(a: bool, b: bool, r: bool)
(o: bool)

await a or r
if r then

return run abro(a, b, r)(o)
elseif a then

return run emitO(a, b, r)(o)
end

end

and activity emitO(a: bool, b: bool, r: bool)
(o: bool)

o = true
await r
return run abro(a, b, r)(o)

end

activity countingCmBetweenSeconds()(distance: int32)
repeat await tick // any tick

if tick cm then
distance = distance + 1

elseif tick sec then
distance = 0

end
end

end

activity updatingSpeed(distance:int32)(speed: int32)
repeat await tick sec

speed = distance
end

end

activity main()
var distance: int32 = 0
var speed: int32 = 0
cobegin

run countingCmBetweenSeconds()(distance)
with

run updatingSpeed(distance)(speed)
end

end

Clocks – a way to express multi-form time

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

23

Speed – the other synchronous “Hello world”

sec

start clock

both

cm

clock cm
clock sec
clock both = cm join sec

on both

on sec

on both

Parallel programming with clocks

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

24

Logical execution time and clock refinement

clock cm
clock sec
clock both = cm join sec

activity startup()()
var speed: int32 = 0
var distance: int32 = 0
cobegin

run countingCmBetweenSeconds
()(distance) on both

with
run updatingSpeed

(distance)(speed) on sec
end

end

From control models to real-time code using Giotto,
Henzinger et al., 2003

Clock refinement in imperative synchronous languages,
Gemünde, Brandt, Schneider, 2013

next
next

on sec
on sec

on sec

sec

cm join sec

distance

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

25

“Bosch is a giant in embedded software” (Dr. V. Denner, CEO)
Wishlist for an embedded real-time programming language

 Hybrid: Time-driven and event-driven
 Predictable and deterministic
 Synchronous concurrency
 Hard real-time
 Bounded memory usage and execution time
 Easy integration of C code
 Prepared for multi-core
 Explicit control of deployment and variable placement
 Compile-time mechanisms for structuring and variants
 Safe shared memory
 Safe type system
 Expressive and productive
 A “real cool” development environment

Core Business
“Things” driven by embedded software

Elevate embedded real-time programming

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

26

Bridging the gap between models and C code
Analysis & Modelling

Design & Implementation
• Real-time requirements
• Reactive concerns
• Software design
• Built-in concurrency
• Deterministic parallelism

Deployment

Bosch products

Simulation &
Transformation

Verification & Testing
• Assertion checking
• Unit testing
• Debugging
• Closed-loop simulation

Hardware-in-the-loop

Field testing

C Task C Task C Task C Task

Legacy
Software

Runtime
& Drivers

Blech

ASCET-DEVELOPER

Simulink®

C Task

Scade®

ASCET-CONGRA

Elevate embedded real-time programming

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

27

Our embedded software vision
 Take care of multi-disciplinary engineering

 Express timing behavior in the program (not in the environment)

 Enable clean embedded software architectures

Re-enable reasoning about parallel programs

 Improve productivity, agility, maintainability, testability, modularity, abstraction

 Support and attract software professionals

First steps on a “cool” development environment

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

28

A Blech Language Server used with Visual Studio Code

Where we stand

Franz-Josef Grosch | 2018-09-11
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

29

… and where to go

We have a clear vision of Blech’s features

We are a small team

We implement the compiler, the language
server and the build system in F#

… we are open for discussion

… we are open for cooperation

… in the mid-term we plan to go open-source

THANK
YOU

www.bosch.com

	��Blech - �A Safe Synchronous Language�fOR Embedded Real-time rogramming ����Franz-Josef Grosch��joint work with FriedRich Gretz and Jens Brandt
	Research and development 2017
	Four Business Sectors�
	Example products
	The importance of embedded software
	Timing behaviour expressed via the environment
	Questions causing trouble
	Build a better tool!
	The synchronous paradigm
	An experiment with Céu�
	Available alternatives do not fulfill our requirements
	Express behaviour over time
	Stackless execution in macro steps
	Functions called on every step
	Concurrent composition with improved readability and flexibility
	Non-global causality analysis
	Structured data types, references, objects, modules
	ABRO – the synchronous “Hello world”
	True tail calls – an efficient way to implement modes
	Recursive tail runs - simple and effective
	Speed – the other synchronous “Hello world”
	Logical execution time and clock refinement
	“Bosch is a giant in embedded software” (Dr. V. Denner, CEO)�Wishlist for an embedded real-time programming language
	Bridging the gap between models and C code
	Our embedded software vision
	A Blech Language Server used with Visual Studio Code
	… and where to go
	Thank�You

