
BLECH –
A SYNCHRONOUS LANGUAGE
FOR EMBEDDED REAL-TIME PROGRAMMING
KEYNOTE, WCET 2019

FRANZ-JOSEF GROSCH

JOINT WORK WITH FRIEDRICH GRETZ

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Technology to enhance quality of life
Bosch

2

Bosch is one
of the world’s leading
international providers

of technology
and services

Over the past years,
Bosch has invested

several billion euros
in research and

development

Engineering
locations worldwide,
in a single network

Our objective:
To develop

innovative, useful, and
exciting products and
solutions to enhance

quality of life – technology
that is

“Invented for life”

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Bosch – a global network
Research and Development 2018

3

4 business sectors

130
Bosch research and development locations
worldwide

The international research network of
Corporate Research has

12 locations in 8 countries

In 2018, Bosch invested

in research and development

7.3 billion €78.5 billion €
In 2018

Company‘s sales

410,000
Bosch associates
worldwide

were invested in Corporate
Research & Bosch Center
for Artificial Intelligence

392,4 million €
In 2018

~1.800
associates in Corporate
Research & Bosch Center
for Artificial Intelligence

69.000
Bosch researchers and
developers worldwide

Bosch Research and development Corporate Research & BCAI

Mobility
Solutions

Industrial
Technology

Consumer
Goods

Energy & Building
Technology

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Technology to enhance quality of life
Some examples
Driver assistance and automated driving Powertrain systems and electrified mobility

 Home appliances Power tools

4

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Bosch “Things” in a connected world
The importance of embedded software

 Bosch's biggest strength in the IoT
ecosystem are the Bosch “Things”

 These devices and physical products cover a
multitude of domains

 Each with high market penetration typically
among the TOP 3

 “Bosch is a giant in embedded software”
(Dr. Volkmar Denner, CEO)

5

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Timing behaviour expressed via the environment
 “One-step” functions …

… composed in operating system tasks

… activated periodic (time-triggered),
sporadic (event-triggered)
or even rate-adaptive

… scheduled according to priorities

f() g()10 msec

k() l()IRQ 10

The structure of embedded software

f()

f() g() h()

2: 10 msec

5: IRQ 10

8: 1 msec

g()

k()

h()

n()

Real world automotive benchmark for free,
Kramer et al., 2015

More details:

6

no inputs, no outputs, operates on global variables

sequentially ordered

repeated on clock-tick or
on interrupt

High priority task pre-empts lower
task switch is a function call
only one stack for all tasks

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

The structure of embedded software
Questions causing trouble

 Single task composition

 Which function is writing
what variable and when?

 What is a suitable order of
functions in a task?

 How do we reason about
combinations of functions in
a task?

 Execution of parallel tasks

 How is the dataflow between
tasks?

 How do we reason about
combinations of functions in
parallel tasks?

One-step functions

 How do we manage state
between two activations?

 How do we reason about the
behaviour of a function over
repeated activations?

Do we need a programming language better suited to embedded requirements?

7

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Why a new language?
Build a better tool!

8

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Should the language be synchronous?
The synchronous paradigm

continuous
hardware

discrete
software

Runtime
environment

Synchronous
program

 Environment communicates asynchronously with
physical world, drives synchronous programs

 A program is executed is steps
‒ A sequence of steps is called a thread (we prefer trail)

 Assume a step takes no time (happens
instantaneously)

‒ No change of input data throughout computation

 Sequences of steps can be composed
concurrently

‒ Accesses to shared data happen in a deterministic,
causal order

9

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Do we need a new synchronous language?
Available alternatives do not fulfill our requirements

Céu purely event-triggered, no causality, soft-realtime

 Esterel no longer supported, focus on control flow and coordination

 Lustre not imperative, focus on data flow, difficult to transfer

Quartz focus too broad: specification of hardware and software

Create a synchronous imperative language - Blech

10

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Goal: Synchronous control for an imperative language
Express behaviour over time

 Start with a safe imperative core language
 Focus on readability
 Safe saturation arithmetic, precisely sized types
 No global variables

 Add a statement to execute in steps
 await <condition/event/clock tick>
 await true await tick

 Introduce two kinds of subprograms
 function – one step, no await
 activity – multiple steps, at least one await

 Introduce two kinds of parameter lists
 Inputs – read only
 Outputs – read/write

function times2 (x: int32) returns int32
return x * 2

end

activity A (inA: int32)(outA: int32)
repeat

await true
outA = times2(inA)
if outA >= 0 then

await inA > 0
end
outA = times2(inA)

until outA < 0 end
end

11

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

How is this executed?
Stackless execution in macro steps

Time steps inA

7

-1

5

-2

𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖+2

𝑡𝑡𝑖𝑖+3

𝑡𝑡𝑖𝑖+4

function times2 (x: int32) returns int32
return x * 2

end

Sequentially Constructive Concurrency, Hanxleden et al., 2013
A standard imperative core language implies

outA

14

14

28

-8

activity A (inA: int32)(outA: int32)
repeat

await true
outA = times2(inA)
if outA >= 0 then

await inA > 0
end
outA = times2(outA)

until outA < 0 end
end

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

void step_of_A () {
// restore code location

// check await condition

// execute corresponding computation

// save location for next reaction
}

How is this compiled?
Functions called on every step

// C-like pseudocode

void mainloop () {
step_of_A();
...

}

Boilerplate state management code
Hard to code manually

“Business” logic
Interesting part of the program

13

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

How is this developed?
Mode transitions as synchronous control flow

14

stop

run

init

StartStop StartStop

StartStop

Reset

Reset

Reset

Start
activity stopWatchControl (isPressedStartStop: bool,

isPressedReset: bool)
(display: Display)

reset when isPressedReset before
// init
display:resetToZero()
if not isPressedStartStop then

await isPressedStartStop
end
repeat

// run
repeat

await true
display:increment()

until isPressedStartStop end
// stop
await false

end
end

end

await isPressedStartStop

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

/// Main Program
@[EntryPoint]
activity Main (isPressedStartStop: bool,

isPressedReset: bool)
var display: Display
cobegin // control

run StopWatchController(isPressedStartStop,
isPressedReset)
(display)

with // render
repeat

display:show()
await true

end
end

end

How is this composed?
Concurrent composition of behaviours over time

 Execution model
 Concurrent behaviours run in

synchronized steps

Causal order
 first, update display data
 second, show display

Code generation
 sequential code
 Statically ordered by the compiler

15

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Combine behaviours over time
Concurrent composition with improved readability and flexibility

 Add a control flow statement for concurrent composition
 Focus on readability: cobegin ... with ... with ... end
 Usable as an orthogonal statement

 Entering cobegin blocks (also called fork)
 Execute multi-step trails (also called threads) concurrently

 Exiting cobegin blocks (also called join)
 Terminate all trails in the same step
 Strong trails run to their end, weak trails can be terminated early

 Execute in causal order of statement sequences
 Concurrent cobegin blocks compile to sequential code
 Causality analysis does not look into activities and functions

 Express parallel and/or
 cobegin ... with ... end // parallel and
 cobegin weak ... with weak ... end // parallel or

activity A(inA: int32)(outA: int32)
...
end

activity B(inB: int32)(outB: int32)
...
end

activity main()
var x: int32
var y: int32
cobegin weak

run A(x)(y)
with

run B(y)(x)
end

end

16

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

activity main()
var x: int32
var y: int32
cobegin weak

run A(x)(y)
with

run B(y)(x)
end

end

Deterministic sequential execution of concurrent code
Non-global causality analysis

Error:
causality

cycle

activity main ()
var x: int32
var y: int32

cobegin weak
run A(x)(y)

with
run B(prev y)(x)

end
end

Solve causality cycle

17

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Local variables stored in global memory
How is this compiled?

18

activity A(inA: int32)(outA: int32)
cobegin

run C()
with

run D()
end

end

activity B(inB: int32)(outB: int32)
run C()
run D()

end

activity main ()
var x: int32
var y: int32
cobegin weak

run A(x)(y)
with

run B(prev y)(x)
end
run E()

end

main

A B

CA DA

E

CB DB

main

A

CA

DA

B

CB DB

E

main

A

CA

DA

B

main

struct A{
/* A's locals */
struct C c;
struct D d;

};
struct B{

/* B's locals */
union {

struct C c;
struct D d;

}
};
struct Main{

/* Main's locals */
union {

struct {
struct A a;
struct B b;

} a_with_b;
struct E e;

};
};

struct Main _Globals;

“Stack views”

Call graph

Pre-computed “cactus stack”

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Software structure and design
Structured data types, references, objects, modules

 Introduce two kinds of types
 value types
 reference types

 Introduce structured value types
 Atomic for causality analysis
 Useful for data exchange
 prev and next allowed, shallow copying

 Introduce reference types
 Atomic for causality analysis
 Useful for structuring
 Non-cyclic dependencies required
 Bound during instantiation

 Introduce modules
 Unit of separate compilation
 Non-cyclic import hierarchy required

struct Value
var first: int32
var second: float32

end

ref struct MyType
var flag: bool
var ref value: Value // initialised at declaration

with
const c: int32 = 42 // compile time constant

param p: float32 = 9.81 // hex file constant

function f() returns int32 // static subprogram
end

mutating activity mt:actMethod() // method subprogram
mt.value.first = f() // deref 'value' taken automatically

end
end
...

var v: Value = {first = 1} // second gets default value
var mt: MyType =

{flag = true, value = v} // ref 'v' taken automatically

19

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

activity countingCmBetweenSeconds()(distance: int32)
repeat await true // any tick

if tick cm then
distance = distance + 1

elseif tick sec then
distance = 0

end
end

end

activity updatingSpeed(distance:int32)(speed: int32)
repeat await tick sec

speed = distance
end

end

activity startup()
var distance: int32 = 0
var speed: int32 = 0
cobegin

run countingCmBetweenSeconds()(distance)
with

run updatingSpeed(distance)(speed)
end

end

Clocks – a way to express multi-form time
Speed – a synchronous “Hello world”

sec

both

cm

clock cm
clock sec
clock both = cm join sec

on both

on both

on both

20

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Parallel programming with clocks
Logical execution time and clock refinement

activity countingCmBetweenSeconds()(distance: int32) on both
repeat await true // any tick

if tick cm then
distance = distance + 1

elseif tick sec then
distance = 0 end

end
end

activity updatingSpeed(distance:int32)(speed: int32)
repeat await true

speed = distance
end

end

activity startup()()
var speed: int32 = 0
var distance: int32 = 0
cobegin

run countingCmBetweenSeconds()(distance)
with

run updatingSpeed(distance)(speed)
end

end

From control models to real-time code using Giotto, Henzinger
et al., 2003

Clock refinement in imperative synchronous languages,
Gemünde, Brandt, Schneider, 2013

nexton both

on sec

21

sec

both

distance

cm

clock cm
clock sec
clock both = cm join sec

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Simplified static analysis
The compiler knows and guarantees static properties
 No recursion
 No pointers
 No address arithmetic
 No dynamic allocation
 No concurrent write conflicts
 No dynamic concurrency
 No dynamic parallelism
 No global variables
 No undefined values
 No programmer-defined locking
 Separate compilation

 Predictable memory usage
 Predictable execution time
 Always one writer multiple readers
 Statically known end-to-end latencies
 Statically known number of clocks
 Known, possible number of tasks
 Predictable synchronisation effort
 Easier task deployment
 Easier variable mapping
 Room for optimisation in code generation
 Reduced need for whole program analysis

22

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

“Bosch is a giant in embedded software” (Dr. V. Denner, CEO)
Wishlist for an embedded real-time programming language

 Hybrid: Time-driven and event-driven
 Predictable and deterministic
 Synchronous concurrency
 Hard real-time
 Bounded memory usage and execution time
 Easy integration of C code
 Prepared for multi-core
 Explicit control of deployment and variable placement
 Compile-time mechanisms for structuring and variants
 Safe shared memory
 Safe type system
 Expressive and productive
 A “real cool” development environment

Core Business
“Things” driven by embedded software

23

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Elevate embedded real-time programming
Bridging the gap between models and C code
Analysis & Modelling

Design & Implementation
• Real-time requirements
• Reactive concerns
• Software design
• Built-in concurrency
• Deterministic parallelism

Deployment

Bosch products

Simulation &
Transformation

Verification & Testing
• Assertion checking
• Unit testing
• Debugging
• Closed-loop simulation

Hardware-in-the-loop

Field testing

C Task C Task C Task C Task

Legacy
Software

Runtime
& Drivers

Blech

ASCET-DEVELOPER

Simulink®

C Task

Scade®

SCODE-CONGRA

24

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Elevate embedded real-time programming
Our embedded software vision
 Take care of multi-disciplinary engineering

 Express timing behavior in the program (not in the environment)

 Enable clean embedded software architectures

Re-enable reasoning about parallel programs

 Improve productivity, agility, maintainability, testability, modularity, abstraction

 Support and attract software professionals

25

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

First steps on a “cool” development environment
A Blech Language Server used with Visual Studio Code

26

Franz-Josef Grosch | 2019-07-09
WCET 2019
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Where we stand
… and where to go

We have a clear vision of Blech’s features

We are a small team

We implement the compiler, the language
server and the build system in F#

… we are open for discussion

… we are open for cooperation

… we prepare to go open-source

27

THANK
YOU

www.bosch.com

	��Blech – �A Synchronous Language�fOR Embedded Real-time Programming��Keynote, WCET 2019 ���Franz-Josef Grosch��joint work with FriedRich GrETZ�
	Technology to enhance quality of life
	Research and Development 2018
	Some examples
	The importance of embedded software
	Timing behaviour expressed via the environment
	Questions causing trouble
	Build a better tool!
	The synchronous paradigm
	Available alternatives do not fulfill our requirements
	Express behaviour over time
	Stackless execution in macro steps
	Functions called on every step
	Mode transitions as synchronous control flow
	Concurrent composition of behaviours over time
	Concurrent composition with improved readability and flexibility
	Non-global causality analysis
	Local variables stored in global memory
	Structured data types, references, objects, modules
	Speed – a synchronous “Hello world”
	Logical execution time and clock refinement
	The compiler knows and guarantees static properties
	“Bosch is a giant in embedded software” (Dr. V. Denner, CEO)�Wishlist for an embedded real-time programming language
	Bridging the gap between models and C code
	Our embedded software vision
	A Blech Language Server used with Visual Studio Code
	… and where to go
	Thank�You

