
IMPLEMENTING TRUE SEPARATE COMPILATION
THE BLECH MODULE SYSTEM

FRIEDRICH GRETZ 
FRANZ-JOSEF GROSCH

SYNCHRON, NOVEMBER 2020
- ONLINE-



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Update since Synchron ’19
The Blech synchronous language Blech

2

 Visit us online: www.blech-lang.org

Check out the implementation at https://github.com/boschresearch/blech

 Compiles on all platforms! (Linux, Mac, Windows)

 A VS Code plug-in can be found at https://github.com/boschresearch/blech-tools/releases

 Follow us at https://twitter.com/BlechLanguage

Get in touch with us by email or https://blech-lang.slack.com

blog articles, 
documentation

Blech  C 
compiler

IDE, installer, …

http://www.blech-lang.org/
https://github.com/boschresearch/blech
https://github.com/boschresearch/blech-tools/releases
https://twitter.com/BlechLanguage
https://join.slack.com/t/blech-lang/shared_invite/enQtODkyMDg4MDQ2Mjc2LWZjZWI1MmE2NTNhOGU0ZTVmMGEzMzY1ODlmNzBlMDFhMTIwMDRlZDA1MmU2NjY2OTFlZTA1NWIwMzU3NThkY2I


Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Talking about separate compilation in Blech

3

• provide a formal semantics for this 
kind of procedural abstraction

Forum on specification & Design Languages 2018

Forum on specification & Design Languages 2020

• introduction of black-box activities,
• causality only based on input/output 

interface



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Talking about separate compilation in Blech

4

 Today:

 a (synchronous) program is not just one file collecting all activities

 software architecture, separation of concerns, reuse of “packages” or “libraries” of software

 modules

Organising code in files and collections thereof is nothing new: e.g. Java classes + JAR
 Engineering task:
 what granularity of name spaces and access rights do we need?
 how does this integrate with C?
 how does this integrate with a synchronous language and causality checking?



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Running example: RingBuffer
Talking about separate compilation in Blech

5

import rb “data_structures/ringbuffer"

module exposes SlidingAverage

param Threshold: nat32 = 10000

activity SlidingAverage (value: nat32) (average: nat32)
var buf: rb.RingBuffer = rb.initialise()
repeat

if value <= Threshold then
rb.push(value)(buf)

end
average = rb.average(buf)
await true

end
end

upstream module

export to downstream client-code

access through given name rb

• no external 
dependency 
management,

• no local imports,
• no shadowing

• simple visibility 
properties

• gathered in one 
declaration at the 
beginning



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

1. Mapping names
Module system design challenges

6

Blech – hierarchical name spaces C – flat global name space

data_structures

slidingaverage.blc

ringbuffer.blc
push (value: nat32) (buf: RingBuffer)

…

rb

SlidingAverage (value: nat32) (average: nat32)

blc_slidingaverage_SlidingAverage (

blc_nat32 value,

blc_nat32 * average

)

void blc_data_structures_ringbuffer_push (

blc_nat32 value,

struct blc_data_structures_ringbuffer_RingBuffer * average

)



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

2. Compiling dependencies automatically
Module system design challenges

7

Blech – hierarchical name spaces

data_structures

slidingaverage.blc

ringbuffer.blc
push (value: nat32) (buf: RingBuffer)

…

rb

SlidingAverage (value: nat32) (average: nat32)

blechc slidingaverage.blc

blechc data_structures/ringbuffer.blc

blech/data_structures/ringbuffer.c

blech/data_structures/ringbuffer.h

blech/data_structures/ringbuffer.blh

blech/slidingaverage.c

blech/slidingaverage.h

blech/slidingaverage.blh

C code

C header

Blech interface



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Module system design challenges
3. Separate compilation, relying on interfaces
Blech sources available Blech header + C object

8

Blech header + C source

blechc slidingaverage.blc

blechc data_structures/ringbuffer.blc

blech/data_structures/ringbuffer.c

blech/data_structures/ringbuffer.h

blech/data_structures/ringbuffer.blh

blech/slidingaverage.c

blech/slidingaverage.h

blech/slidingaverage.blh

blechc slidingaverage.blc

blechc blech/
data_structures/
ringbuffer.blh

blech/data_structures/ringbuffer.c

blech/data_structures/ringbuffer.h

blech/slidingaverage.c

blech/slidingaverage.h

blech/slidingaverage.blh

blechc slidingaverage.blc

blechc blech/
data_structures/
ringbuffer.blh

blech/data_structures/ringbuffer.o

blech/data_structures/ringbuffer.h

blech/slidingaverage.c

blech/slidingaverage.h

blech/slidingaverage.blh



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Module system design challenges
3. Separate compilation, relying on interfaces
Blech sources available
 all sources available to the 

programmer

Blech header + C object
 API of imported Blech 

module is available
 Blech implementation is 

secret
C code is secret

9

Blech header + C source
 API of imported Blech 

module is available
 Blech implementation is 

secret
 generated C code is 

available



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3. Separate compilation, relying on interfaces
Module system design challenges

10

module exposes initialise, push, average

const Size: nat8 = 10

struct RingBuffer
var buffer: [Size]nat32
var nextIndex: nat8
var count: nat8

end

function initialise () returns RingBuffer
return { }

end

function push (value: nat32) (rb: RingBuffer)
rb.buffer[rb.nextIndex] = value
rb.nextIndex = rb.nextIndex + 1
if rb.count = Size then // ringbuffer ist completely filled

rb.nextIndex = rb.nextIndex % Size
else

rb.count = rb.count + 1
end

end

function average (rb: RingBuffer) returns nat32
var idx: nat8 = 0
var avg: nat32 = 0
while idx < rb.count do

avg = avg + rb.buffer[idx]
end
return avg / rb.count

end

Implementation: ringbuffer.blc



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3. Separate compilation, relying on interfaces
Module system design challenges

11

signature

type RingBuffer

function initialise () returns RingBuffer

function push (value: nat32) (rb: RingBuffer)

function average (rb: RingBuffer) returns nat32

Interface: ringbuffer.blh (generated by blechc)

functions were explicitly exposed

the type is used by an exposed function and therefore is implicitly exposed

the module constant “Size” is not exposed at all and unknown outside the ringbuffer module



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3. Separate compilation, relying on interfaces
Module system design challenges

12

What to do with singletons?
module exposes Monitor

@[CFunction (binding = "wifi_is_online()", header = "wifi.h")]
extern singleton function wifiIsOnline () returns bool

activity Monitor () (leds: LEDs)
repeat

leds.wifiLed = wifiIsOnline()
await true

end
end

signature

type LEDs

singleton wifiIsOnline

singleton wifiIsOnline activity Monitor (leds: LEDs)

Monitor must not be called concurrently with 
anything that uses wifiIsOnline (including 
itself).



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

White-box unit testing
Module system design challenges

13

internal import rb "ringbuffer"

@[EntryPoint]
activity TestPush ()

var buf: rb.RingBuffer = rb.initialise()
var i: nat8 = 0
repeat

assert buf.nextIndex < rb.Size
assert buf.nextIndex == i % rb.Size
assert buf.count >= 0
assert buf.count <= rb.Size

rb.push(42)(buf) // the value is irrelevant
i = i + 1

if i < rb.Size then assert buf.count == i
else assert buf.count == rb.Size end
await true

until i == 255 end
end

Internal import
• only possible if Blech code is available
• allows to separate testing code from product code



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Layered Architecture
Design pragmatics

14

data_structures

slidingaverage.blc

ringbuffer.blc

import sa "slidingaverage"

@[EntryPoint]
activity Main (sensor: nat32) (sensorAverage: nat32)

run sa.SlidingAverage(sensor)(sensorAverage)
end

main.blc

• absence of import cycles checked 
automatically

• differentiate modules and programs
• programs contain an entry point and 

cannot be imported, no blh is generated
• separate testability of each module (or layer)



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Summary

15

Module = file
 Everything visible within file (or within internal import)
 A declaration is either exposed or not (opaque types / singletons automatically exposed if necessary)
Generation of a “Blech API” (*.blh) which
 does not reveal implementation details
 suffices for downstream code generation

 Layered architecture
Modules could be wrapped to packages (cf. Blog)
Modules organise name spaces but they do not address generic data structures  future work
 Implementation work in progress, planned release end of 2020.

https://www.blech-lang.org/blog/2020/11/23/a-module-system-for-blech/
https://github.com/boschresearch/blech/tree/feature/modules


Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Syntax
Design pragmatics

16

 dependencies clearly visible in code instead of external project configuration files
 simple visibility properties
 gathered in one declaration at the beginning



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

White-box testing
Design pragmatics

17



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

18

 recap: 
 FDL’18 explained the principle of black-box activities, causality only based on input/output interface
 FDL’20 provide a formal semantics for this kind of procedural abstraction

 Today:
 a (synchronous) program is not just one file collecting all activities
 software architecture, separation of concerns, reuse of “packages” or “libraries” of software
  collect types, activities, functions into a module (= file)
 collect modules into library
 this is common place for standard languages (Java JARs, Rust crates, …)
 our main challenges:

‒ mapping to C where all names are global without producing clashes
‒ compiling everything that a module/program needs automatically, unlike C/C++ where you need to specify all dependencies 

in a makefile manually
‒ lift black-box approach to modules, meaning modules may be precompiled and the compiler relies only on the module’s 

interface which we call “Signature”



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

19

Design choices in detail
 name mangling: encode folder structure, module name into the name of every static element
 exposing (types) explicitly vs implicitly vs not-at-all

‒ within module scope (file scope) everything is visible
‒ functions, activities, constants are either exposed to the client or not
‒ types which are not explicitly exposed but are required by the parameter list of exposed functions/activites are exported as 

abstract types (i.e. just names)
‒ for unit testing, special white-box import to keep implementation file and test file separate (source code needed, signature 

file insufficient, but that is given for testing)
 singletons

‒ activities which access global (external) memory become singleton in Blech, activities calling singletons become singletons 
themselves

‒ in order to causality check such singletons (prevent concurrent use to itself) the signature must contain the “reason” i.e. 
names for why they are singleton



Gretz, Grosch | 2020-11-26
© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

20

 Lessons learnt? or why are we telling you this??
 engineering challenge
 causality analysis with module signatures, no global analysis required
 separate compilation with precompiled sources for synchronous lang
 make sure non-exported elements do not leak to the outside
 KISS

 Status of implementation?
 Future work: generics (orthogonal to modules)


	��Implementing true separate compilation�the Blech module system���Friedrich Gretz �Franz-Josef Grosch���Synchron, November 2020�- online-
	Update since Synchron ’19
	Slide Number 3
	Slide Number 4
	Running example: RingBuffer
	1. Mapping names
	2. Compiling dependencies automatically
	3. Separate compilation, relying on interfaces
	3. Separate compilation, relying on interfaces
	3. Separate compilation, relying on interfaces
	3. Separate compilation, relying on interfaces
	3. Separate compilation, relying on interfaces
	White-box unit testing
	Layered Architecture
	Slide Number 15
	Syntax
	White-box testing
	Slide Number 18
	Slide Number 19
	Slide Number 20

