
Blech Tutorial

Gretz, Friedrich Grosch, Franz-Josef

Bosch Corporate Research

Version: 1.2
September 2020

This document was originally released as supplementary material for the Bosch Confer-
ence on Software Engineering tutorial on Blech. It may be used on its own as a means
to get a first impression of the language and get a Blech project up and running. To
complete the programming assignments a Bosch XDK device is required.

Contents

1. Embedded Software 4

2. Challenges 6
2.1. Resource constraints . 6
2.2. Divide and conquer in embedded systems 6
2.3. Mode switching behaviour . 8
2.4. Software is soft . 8

3. Synchronous Programming 10

4. Hands on Blech 16
4.1. Preparation . 16
4.2. Blinking LEDs . 17
4.3. Baseline Specification – Unlocking the virtual lock 18
4.4. Cancellation . 19
4.5. Full Specification – User Defined Secret Code 20
4.6. Bonus: a Change Request Comes in… 21
4.7. Retrospect . 21

5. Scope of Blech 23
5.1. In scope . 23
5.2. Out of scope . 24

6. Available Technology 25
6.1. The Classics . 25
6.2. Model-based engineering . 25
6.3. Academic Languages . 27

7. Outlook 28

A. Sample solutions 31

3

1. Embedded Software

Software is deployed in many different contexts. Here we try to give an intuitive de-
scription of embedded systems and their software. Embedded systems are hardware/-
software systems wherein discrete software interacts with the analogue world. Sensors
measure continuous quantities and provide discrete values to the software. The soft-
ware reacts by producing control points for actuators or information to be forwarded to
other software systems. The term embedded reflects that the system does not have a
purpose in itself. Instead it provides some functionality within a more complex system,
for example the engine control is embedded in a car. The software running in such
systems is often called “embedded software”. It consists of various different parts, cf.
Fig. 1.1. There may be some real-time operating system that schedules different soft-
ware components. Drivers are used to make use of particular hardware features while
the hardware abstraction layer glues driver software together with the hardware of vari-
ous platforms. We are mostly interested in what is called the “application level” software.
This is where the logic and the functionality of the embedded system is programmed.

The description of our domain of interest is not precise, of course. There are sys-
tems which are not classically perceived as embedded systems such as a software-
implemented network traffic router. It operates purely on logical data and has no sensors
or actuators. Yet it shares the state-based, event-triggered behaviour with the embed-
ded systems described here and the considerations of the following chapters may apply
to it too. On the other hand, there are applications that need to work at faster rates and
with lower power consumption than what is possible with a software programmable mi-
cro controller. Such applications will usually be implemented in a hardware description
language. The result of this implementation is a custom application-specific integrated
circuit (ASIC) or a configuration of a field-programmable gate array (FPGA). Albeit being
part of an embedded system these applications are out of scope for us.

4

Figure 1.1.: Typical layers of an embedded hardware/software architecture.

5

2. Challenges

2.1. Resource constraints

Costs per unit and energy efficiency are the two most important requirements for any
embedded system. A harsh environment may be another reason that precludes the
usage of very fast but sensitive processors. As a consequence the hardware has to
be chosen such that it provides just the necessary computation power and memory
storage. The software must then be as resource efficient as possible to fulfil its task with
the limited resources given. This precludes some of the abstractions and technologies
known from desktop or web application development. Examples are functional and
logical programming, runtime polymorphism, type introspection or even reflection.

Often an embedded system fulfils a safety critical function. For such applications show-
ing partial correctness1 is not enough. It needs to be shown that the hardware-software
system never crashes and produces its results on time. Fortunately, simpler hardware
architectures often make the runtime behaviour of any given software more predictable.
But also the behaviour of the software needs to be further restricted. For example, mem-
ory must not be dynamically allocated at runtime. The reason is that memory leaks are
hard to find and may lead to a fatal crash once they occur. Also the timing is affected by
the amount of memory used. A typical embedded system has a fixed amount of inputs,
outputs and internal state variables. The needed amount of memory does not change
over the lifetime of an embedded program. It does not need to generate “garbage” on the
heap that can be cleaned up once the result has been computed. Unlike desktop appli-
cations, embedded software applications are not loaded and unloaded at runtime—they
run continuously.

This leads us to the next section.

2.2. Divide and conquer in embedded systems

Classically, computation problems are decomposed into simpler subproblems that are
solved individually. Then, the intermediate results can be processed to obtain the final

1A program is partially correct if it produces the correct result provided that it terminates. However there
is no guarantee that it does terminate on all inputs nor is there a time bound on how long a terminating
execution may take. This is the notion of correctness which is most commonly used in verification.

6

Figure 2.1.: Typical sequential composition of an algorithm.

result. The reasoning is sequential: first do all steps necessary to solve the first sub-
problem, then all steps to the second, etc… Consider Fig. 2.1, for example. It shows
a sequence of operations carried out by the “mergesort” algorithm: it receives an array
to be sorted, splits it into smaller chunks which then can be merged while respecting
the order between elements. Finally the sorted array is returned. When executed, the
algorithm has a point in time where it starts and where it terminates but there is no nec-
essary requirement on the computation duration. Classical computation problems allow
performance gains through parallelisation whenever the subproblems to be solved are
independent.

This is substantially different for embedded systems. Their software usually runs in re-
actions. It is triggered whenever some specific event occurs, for instance when a timer
expires. Then the software is given some inputs and is expected to react with corre-
sponding outputs. However, this single reaction step will involve computations from
different software components that are responsible for different functionalities. Concep-
tually, these software components concurrently perform one reaction step each. For
example, imagine a driver assistance system which consists of a collision detector, tra-
jectory planner and controller for steering and acceleration. A classical sequential mind-
set would dictate: first make all collision detection steps, then plan the whole trajectory
and finally emit all control steps and terminate the program. Of course, this does not
make any sense due to the reactive nature of the system. Instead, in every time tick the
system would perform a reaction step in each of the components. Figure 2.2 visualises
the execution of such a reactive system. Ticks along the timeline indicate that a reaction
is triggered at specific points in time. In every time tick every software component re-
ceives inputs, carries out some computation, returns outputs and waits for the next tick.
This is indicated by boxes and the horizontal, dashed arrows between them. During a
reaction instance there may be some communication between the individual software
components which is indicated by the vertical arrows. The crucial insight is that from the
modelling perspective we have several components and they execute concurrently from
one reaction to the next. It is true that the individual instructions that need to be per-
formed during one reaction instance possibly have to be scheduled into a sequence to
be executed but that is a detail below the programmer’s abstract model of computation.

Thus decomposition of the software’s complex overall behaviour across reaction steps
is obtained by concurrent and hierarchical composition of simpler behaviours. An ap-

7

Figure 2.2.: Reactive and concurrent nature of embedded software.

propriate programming language for embedded software should have means to express
reaction steps and the concurrent composition of subprograms running in steps.

2.3. Mode switching behaviour

Usually, the application software does not always repeat the same computation in every
reaction. Instead it reacts differently depending on the inputs given (user input, sen-
sor readings) and its current state. A program’s state is the evaluation of all program
variables and program counters. Typically a program will run through many states while
executing one reaction step. As programmers we prefer to abstract from concrete states
that the program assumes and rather speak of “modes”. A mode is a more abstract term
to describe a particular behaviour that is currently executed. For example, the software
may be in a mode where a PID controller with particular parameters is used to control
the system. In a different mode, a different set of parameters or even a different control
algorithm may be used. A reaction of a program may result in a mode transition.

We believe it is crucial that modes and transitions between them can be expressed
directly in the programming language that is used to develop the application logic. The
key issue here is to not encode mode switching behaviour in goto-like jumping spaghetti
code but instead allow for a structured imperative control flow.

2.4. Software is soft

Often people working in embedded software are so caught up in the aforementioned
restrictions of the domain that they seem to forget what writing software is all about:
it is flexibility. It is fundamentally wrong to believe that once a product is released its

8

software does not change. The whole point is that the software can evolve with changing
customer needs, be adapted to different variants of customer needs, be ported to other
platforms and even be upgraded on devices already in the field. The latter might be
due to new features which were developed after the product’s release or—in the worst
case—due to a bug discovered after release.

All this goes to show that the chosen implementation technology should offer as much
flexibility to the developer as possible while meeting the constraints discussed in the
previous sections. The program text should be easy to read2, understand and modify.
Local changes must not unexpectedly alter the global behaviour of the software. Clear-
cut interfaces are needed so separate individual modules or functions of the software.

2“Program text is read more often than written” is a well-known mantra.

9

3. Synchronous Programming

Here we describe the essential building blocks of an embedded application program by
means of our language Blech.

Since we are interested in the application level software only, we may assume there
is already some basic software—the runtime environment—that takes care of reading
sensors and acting upon actuators. We look at the logic in between.

Activities Our software will be built of subprograms called activities. For example,
here is a declaration of an activity with the name MyAct.
activity MyAct (in1: bool, in2: float32) (out1: nat8)

// some code ...
end

There are two inputs in1 and in2. The activity may only read its inputs but not modify
them. A second parameter list contains one output variable out1. It may be both read
and written. In every tick the values of the inputs are updated, the code inside MyAct is
executed and the outputs are written back to the caller.

Reactions We have explained that an application executes in reaction steps. In order
to explicitly define a control point where a reaction ends and the next one begins we use
the await statement. For example, we could write the following code.

1 activity MyAct (in1: bool, in2: float32) (out1: nat8)
2 repeat
3 await in1
4 out1 = (out1 + 1) % 100 // count from 0 to 99
5 until in2 < 0.0f end
6 end

Initially, MyAct is entered and the control flow proceeds to line 3 and stops (regardless of
the inputs). In the next tick, MyAct resumes its execution at the await statement in line
3. It checks the boolean input variable in1. If it is false, the reaction ends immediately,
the control flow does not advance. Otherwise, if in1 is true, the calculation is carried
out in line 4. This updates out1 to a new value. Finally, if input in2 is indeed less than 0
the activity terminates its execution. Otherwise the control flow loops around from line
5 back to line 2 and finally the reaction ends again in line 3. Note that the inputs are not

10

volatile. Blech semantics guarantees that the value of an input does not change while
a reaction is running1.

Activities may terminate after a finite number of reactions but they do not have to. The
only requirement is that each reaction takes only a finite amount of time. Therefore there
must be an await statement on every control flow path in an activity—in particular, every
loop must have a pause in its body.

Concurrent composition Several pieces of code that describe stepwise behaviour
may be composed concurrently using cobegin..with..end.

1 activity P ()
2 var x: int32
3 var y: int32
4 var z: int32
5 cobegin
6 run A(x)(z)
7 with
8 run B(y)(x)
9 end

10 end

Assume the activities A and B have already been implemented. In lines 5 – 9 they are
composed concurrently. This means the control flow of P is forked into two control flow
points. One resides in A (line 6) and one in B (line 8). With every tick both, A and B, will
perform one reaction. When both subprograms terminate, P regains control in line 9 and,
in this example, terminates too. Of course, more than two branches can be combined
using further with blocks.

Write-before-read order Notice that in the previous example activity A read x and
produced z while B read y and produced x concurrently. To achieve a deterministic
behaviour we have to define what value of x is given to A. We define that any shared
variable must be written before concurrent readers may access the variable. The code
generation will automatically take care of this and generate a code which will first ex-
ecute the step in B and then in A. We call this the causal execution order. This ex-
ample shows that the lexicographical order in the source code text is irrelevant to the
execution order—only the data flow matters. This makes the programs robust to code
refactorings where branches are moved, or code changes where new branches may be
introduced.

It is possible to write programs where no causal ordering is possible:

1This is a consequence of the synchrony hypothesis, cf. [3]

11

cobegin
run A(x)(y) // now A writes to y

with
run B(y)(x)

end

In such cases the compiler will raise an error and refuse to translate this program. It
is up to the programmer to decide in this case where execution should start using a
previous value of a variable. For example:
cobegin

run A(x)(y)
with

run B(prev y)(x) // use value of y from the previous reaction
end

Here the execution is clearly determined. Activity B starts with the value of y from the
previous reaction and computes a new value for x in the current reaction. This current
value of x is then used by A to produce the new current value of y.

Preemptions In the above cobegin examples both branches must terminate before
the calling thread regains control and proceeds. Sometimes however we do not want to
wait for all branches to terminate and instead want to move on as soon as one of them
terminates. Consider this example:

1 cobegin weak
2 run WaitForKeyStroke(...)(...) // ... arguments for readability
3 with weak
4 run WaitFor5Seconds()()
5 end

This piece of code will halt the control until either we detect a key stroke from the user
and WaitForKeyStroke terminates or five seconds elapse (or both happens at the same
reaction step). The weak keyword says that the following block may be aborted at the
end of its reaction step. A cobegin statement joins in the reaction step in which some
branch terminates and all strong branches have terminated. To conclude, consider a
last example:

1 cobegin weak
2 repeat // infinite loop
3 await true
4 out1 = (out1 + 1) % 100
5 end
6 with
7 run WaitForKeyStroke(...)(...) // no arguments for readability
8 end

12

Here the loop in the first block is intentionally infinite. However the block is weak and
hence is aborted at the end of the reaction in which the key stroke was detected and
the WaitForKeyStroke terminates.

Other variants of preemptions are the abort and reset statements. They are almost
self explanatory.

1 activity MyAct (in1: bool) (out1: nat8)
2 // do something ...
3
4 when in1 abort
5 out1 = 1
6 await true
7 out1 = 2
8 await true
9 out1 = 3

10 end
11
12 // do something else ...
13 end

The statement in line 4 says that when a reaction starts in the block lines 5 – 9, it is
checked whether in1 is true and in that case the control flow skips to line 10. Thus when
control flow reaches line 4 it will immediately proceed to line 5, set out1 accordingly and
finish this reaction in line 6 (regardless of the value of in1). The next reaction starts by
checking the abort condition in1. If it is true we skip the rest of the block and proceed
to line 10. Otherwise, we check the condition of the await statement which here is
vacuously true and the reaction proceeds to line 7 and finishes in line 8. The same
reasoning applies in line 8: the execution is possibly aborted before setting out1 to 3.
In any case, the block is left in line 10.

The abort statement is useful whenever we want to skip over a sequence of reactions
when we detect some issue at the beginning of a reaction. Sometimes instead of skip-
ping ahead we would like to restart a sequence of reactions. For this we may use the
reset statement.

1 activity MyAct (in1: bool) (out1: nat8)
2 // do something ...
3
4 when in1 reset // reset instead of abort
5 out1 = 1
6 await true
7 out1 = 2
8 await true
9 out1 = 3

10 end
11
12 // do something else ...
13 end

13

It behaves just like the abort statement from the previous example except it jumps to
line 4 if in1 is true.

Data structures The previous examples relied on inputs and outputs of activities to
carry out computations. It is also possible to declare different kinds of variables.

1 const LEN: int8 = 5
2 param lut: [LEN]float32 = {−0.1f, 0.1f, 0.2f} // remaining are 0.0f
3
4 activity MyAct (in1: bool) (out1: nat8)
5 // ...
6 let x: bool = not in1
7 var y = out1 + 12
8 // ...
9 end

The keyword const declares a compile-time constant. It allows you to parameterise
your code with values which need not have a representation after the compilation. The
keyword param declares run-time read-only constants. Most often this is used for some
lookup data structures such as characteristic maps. Note, that paramss are supposed to
be customizable in the compiled binary. Inside an activity you additionally may declare
data with let and var. The former allows read-only access only. The latter declares an
ordinary mutable variable. Note that let and param are not the same. In the example
you see that the value of x depends on the value of in1 at run-time. The value of a
param must be known at compile time already.

In the examples we have used some primitive data types. So far we support bool, nat8,
nat16, nat32, nat64, int8, int16, int32, int64, bits8, bits16, bits32, bits64, float32
and float64. Line 2 in the example above also demonstrates an array of five 32-bit
floats. The initialiser deliberately leaves out the last two values which are automatically
filled in with the default value by the compiler. The default value of a boolean is false.
For all numerical types the default value is zero.

Sometimes types can be deduced by the compiler by looking at the initialiser. For in-
stance, in line 7 the sum of an nat8 and a constant number is determined to be of type
nat8 again and hence this is the type of y.

Structures can be declared using the struct keyword.
1 struct MyStructure
2 var x: int32 // mutable field
3 let id: nat32 // fixed at initialisation
4 end

14

Functions We use functions to encapsulate complex expressions or algorithms that
run entirely within one reaction. Functions cannot contain any statements which we use
for reactive concurrent programming: await, run, cobegin, abort, reset.

1 function getMean (arr: [LEN]int32) (/*no outputs*/) returns int32
2 var i: nat32 = 0
3 var sum: int32 = 0
4 repeat
5 sum = sum + arr[i]
6 i = i + 1
7 until i >= LEN end
8 return sum / LEN
9 end

Just like in activities we also distinguish between read-only inputs and read-write outputs
in functions. Output parameters are useful when a function needs to update the given
data in-place instead of returning a new value. This makes side-effects explicit for the
programmer.

15

4. Hands on Blech

Figure 4.1.: A safe with a dial lock.
Downloaded and adapted from https://www.wikihow.com/Open-a-Safe under CC
BY-NC-SA 3.0 license on 09th September 2019.

In this chapter we develop our own Blech application. Our toy example uses the anal-
ogy of a safe lock. A safe is usually unlocked using a secret code which comprises a
sequence of dial rotations, cf. Fig. 4.1. Here we want to mimic the dialling process using
a Bosch XDK. The user interacts with the “virtual safe lock” by turning it and pressing
buttons. The XDK signals success or failure using its LEDs . Of course, this is not a sen-
sible product but just a toy. However, it demonstrates nearly all aspects of embedded
software and its challenges, as well as language features to meet those.

4.1. Preparation

If not already done, install

1. theBlech compiler https://www.blech-lang.org/docs/getting-started/blechc/
This compiles Blech code to C code

2. Visual Studio Code https://code.visualstudio.com/
We use VSCode to edit Blech source files.

16

https://www.blech-lang.org/docs/getting-started/blechc/
https://code.visualstudio.com/

3. Blech language services for VSCode https://www.blech-lang.org/docs/getting-started/
vsce/
This plug-in makes VSCode aware of the Blech language and offers editing sup-
port such as syntax highlighting or type checking

4. XDKWorkbench https://developer.bosch.com/web/xdk/downloads (you need
to sign up for free to access the downloads and you need admin rights to install
the workbench)
This compiles our C code and flashes the result onto the XDK device

We provide code skeletons for this tutorial: https://www.blech-lang.org/docs/examples/
virtuallock.

4.2. Blinking LEDs

1. Once everything is installed, start the XDK Workbench, select a workspace folder
and start a new Mita project (“Use Eclipse Mita”). This will create a folder
“EclipseMitaApplication” inside your workspace. It contains a default code skele-
ton which we do not need however. Instead we copy our own code skeleton
into this folder. For this, copy all files from the provided 01_Blinking_LEDs into
EclipseMitaApplication (possibly overwriting existing files!).

2. From a command line navigate to EclipseMitaApplication\src-gen and run
blechc .\virtualSafeLock.blc

3. In the XDK Workbench, force the re-compilation of the project simply by making a
minimal change to application.mita. For example, add a space in some empty
line and save the file.

4. Connect your XDK to the PC using the USB cable and turn on the XDK (there
is a power switch on the XDK itself!) After a short moment, the XDK Workbench
should show that an XDK is connected through a COM port. If it does not, try
unplugging the cable from the XDK and connecting it back again.

5. Hit the Flash button in the XDK Workbench. This compiles the generated C code
and all necessary drivers, real-time OS, … into one HEX file and flashes that onto
the XDK. It takes a while when running the first time. Subsequent runs will be
much faster because only the parts which have changed are recompiled. If there
is an “Invalid Application” error at the very end, hit “Flash” again.

We have run through the complete build process now, cf. Fig. 4.2. For the rest of this
tutorial all you need to do to try out your Blech code on the XDK is: edit virtualSafe-
Lock.blc, run blechc, click Flash.

Now, that the toolchain is tested and we know how to compile our code, let us finally
write some in Blech.

17

https://www.blech-lang.org/docs/getting-started/vsce/
https://www.blech-lang.org/docs/getting-started/vsce/
https://developer.bosch.com/web/xdk/downloads
https://www.blech-lang.org/docs/examples/virtuallock
https://www.blech-lang.org/docs/examples/virtuallock

Figure 4.2.: The build process of the entire project: the triggering environment is spec-
ified in Mita and is translated to C by the Mita compiler (once); the Blech
sources are translated to C by the Blech compiler; finally, the XDK Work-
bench compiles these C sources together with drivers and libraries into one
executable HEX file and flashes that onto the XDK device.

Assignment Fill in the necessary Blech code to make the device blink at a rate of 1Hz
(change its state every 500ms). You may assume that our Blech program will be called
every 100ms.

In case you are curious how this is achieved you can look it up in the application.mita
file. There you see that the Blech tick function is called from an “every 100 milliseconds”
block.

4.3. Baseline Specification – Unlocking the virtual lock

1. In the z-plane we discern four positions: top, left, right, bottom

2. LEDs blinking at 1Hz (every 500ms) indicate the locked mode

3. Permanently lit LEDs indicate the unlocked mode

4. While entering a sequence of positions the device indicates whether one of the
four predetermined positions is recognised (middle LED lit) or whether the device
is just about left of or right of a determined position (left, resp. right LED lit)

5. Initially, the device is locked

6. From the locked mode pressing button one starts the unlocking procedure

7. While unlocking, to enter a position the device must be in a determined position
and the user must press button one

8. If a wrong position is entered, the device returns to the locked mode

9. Once the last position has been successfully entered the device transitions to the
unlocked mode

18

Locked &
Blinkingstart Unlocking Open & all

LEDs litB1

B1, all positions
entered correctly

B1, wrong code B1

B1

Figure 4.3.: Visualisation of base line specification. B1 – button one is pressed.

Figure 4.3 visualises the behaviour in a diagram.

Assignment

4.3 a) We provide all necessary code to determine the pose of the device given the ac-
celerometer sensor readings. Copy the skeleton from 02_Unlocking.

4.3 b) Where and how do you store the secret sequence of poses?

4.3 c) How do you model the three modes? How do you transition between them?

4.3 d) Implement the unlocking procedure as described. Make use of the given activity
DisplayOrientation to process sensor readings.

4.4. Cancellation

We add an additional behaviour to our device. The user may abort any operation by
putting the device face down on the table.

Assignment Implement the additional requirement:

• If the XDK lies face down (z < −900) on the table (mlux < 18000) the program
should jump back to its initial state.

19

Locked &
Blinkingstart Unlocking Open & all

LEDs lit

Set new
secret

B1
B1, all positions
entered correctly

B1, wrong code B1

B1

B1

R

R

R

R B2B2

Figure 4.4.: Visualisation of the full specification. B1 – button one is pressed, B2 – button
two is pressed, R – reset by placing device face down on the table.

4.5. Full Specification – User Defined Secret Code

Once the device is unlocked the user may set her own secret. The secret sequence may
contain up to 8 poses (or less). Entering the poses works analogously to the unlocking
phase. Pressing button two after entering some poses saves the sequence and returns
to the locked mode. The user may also choose to simply lock the safe again without
changing the code. Make sure that the current secret remains unchanged if the user
aborts the process of setting a new secret. Figure 4.4 shows a diagram with all possible
transitions between modes.

Assignment Finish the implementation of the virtual lock according to the given spec-
ification.

20

4.6. Bonus: a Change Request Comes in…

Now that we have implemented the full specification we are done. So it seems. An ex-
pert evaluates our lock and reports that it reveals too much information to an attacker.
Since it fails on the first incorrect input and immediately goes to locked mode the se-
cret may be guessed with at most three attempts per position. In order to prevent this
information leak the unlocking phase is redesigned as follows:

• In the unlocking phase, keep reading poses entered with button one.

• Only when button two is pressed make a transition to one of the two possible
successor modes, depending on whether the input was correct.

Assignment Correct your implementation accordingly.

4.7. Retrospect

Our example demonstrated the integration of aBlech application on a HW/SWplatform.
We have used the Bosch XDK as the hardware platform. Mita was used to specify the
software runtime. The runtime periodically provides inputs to our Blech program and
interprets its outputs.

Blech was used to implement the logical steps of our application. Stepwise behaviour
is implemented inside subprograms that we call activities. An activity may pause its
control flow with the await statement. Executing an activity from one pause to the next
is what we call a reaction. In Sect. 4.2 we have started out with the simplest stepwise
behaviour: counting steps and inverting the LEDs upon every fifth step.

In the next section we started to introduce different modes of operation1. Our virtual
lock could progress from an initial mode to a mode where the user is entering the secret
key and upon success a final mode was reached that indicated that the lock is open.
Towards the end of the tutorial we addedmoremodes, refined their behaviour and added
more transitions between these modes.

Our main tool to build complex behaviours from simple ones is composition. The most
obvious form of composition is sequential composition. Using synchronous preemp-
tions we may skip part of a sequence or jump back to the beginning of a sequence.
This was particularly useful in Sect. 4.4. Finally, we have used the cobegin statement
to express concurrent composition. It allows to combine behaviours that happen in
the same reaction. For example, in the unlocking mode the device had to indicate its

1The SCODE method [1] may help you to identify what are the modes of operation in a given system.
Once these are known, Blech offers the means to implement the modes and transitions between them
in a straightforward way.

21

pose through its LEDs while also accepting user input and checking its correctness.
The cobegin statement gives us the flexibility to decide which of its branches must fin-
ish execution (strong branches) and which may be aborted at the end of a tick (weak
branches).

We use activities to encapsulate stepwise behaviour and we use function to encap-
sulate complex expressions or sequential algorithms. Structuring our program using
manageable subprograms facilitates the separation of concerns, allows for modular
composition of software and increases maintainability. For large projects this means
different teams can develop different parts of a system concurrently and independently
as long as the interfaces of these parts are clearly defined.

By design Blech does not have global mutable variables. Instead the programmer
uses parameter lists to pass data in and out of subprograms. In particular, parameters
are grouped in an input (read-only) and an output (read-write) list. This clearly docu-
ments what a caller may expect the callee to do with the data. The automated causality
analysis leverages this information to ensure consistency of data between concurrent
branches. This makes handling shared variables trivial. Write-write conflicts between
concurrent branches are automatically flagged by our compiler. The same is true for
read-write cycles (causality cycles). These can be resolved using previous values of
input arguments. Since the concurrent composition is deterministic, Blech programs
can be tested with reproducible outcomes.

Using this small example we hope to have demonstrated how Blech addresses typical
challenges in embedded software development, cf. Chapter 2. In the following, we
discuss further potential applications of Blech and give an outlook of what may be added
to the language to leverage its full potential in the future.

22

5. Scope of Blech

Our example in the previous chapter illustrated how the Blech language can beneficially
used in the embedded systems context. The virtual safe lock, of course, is not a real
product. It illustrates how a software product on the Bosch XDK might be developed.
However, it is important to stress, that the Blech language is in no way tied or limited to
a specific platform or product area. Here we give a few pointers into different product
areas where Blech could substantially improve software development.

5.1. In scope

Today, embedded software is an integral part of all sorts of products. Prominent ex-
amples from the automobile industry include electronic control units for all sorts of car
components such as the engine, brakes, steering, bodywork electronics or multimedia.
In the same way, software is used to control smart home appliances or power tools.
Building technology comprises hazard recognition, public address systems, heating or
air-conditioning which all are controlled by a software system. Digitalisation in factories,
commonly referred to as Industry 4.0, is largely based on adding software systems to
machines or produced items in order to monitor or control them. In the same way all the
things and gateways in an Internet-of-things architecture rely on software embedded
into them.

In all these examples we find commonalities: the software reacts to external inputs in the
form of sensor samples or other triggering events. The result of a computation step is
some sort of information or command for the environment. Often decisions made during
the reaction step are based on the internal state or mode of operation of the software. In
such situations Blech helps to introduce abstractions and increase maintainability and
flexibility of the software.

Note that it does not matter whether the implemented functionality is “close to the hard-
ware” such as an operation on memory buffers triggered by an interrupt, or whether it is
a “high level” functionality such as a controller of an infotainment system which decides
which menu to display next to the user. It is the reactive behaviour of the functionality
that is relevant for Blech.

The language is designed to meet tight memory and execution time constraints which
often are imposed by safety critical real-time systems.

23

5.2. Out of scope

By design Blech precludes asynchronous communication between its activities. Blech
programs thus may be part of a “globally asynchronous locally synchronous” (GALS)
architecture but they cannot replace the asynchronous middleware which is needed to
connect the synchronous “islands”.

Another key design choice in Blech is to preclude dynamic memory management. This
provides us with guarantees which are needed to build safety-critical systems. However
it prevents us from building data intensive applications which require data structures of
arbitrary size natively in Blech.

Finally, our concurrency mechanisms allow only a static branch structure as well. This
means we cannot spawn worker threads whose number depends on the given input. A
typical scenario where this is needed is graphics processing where a program running
on a GPU may start as many workers as there are rows in a given matrix.

Note, that these software systems are excluded as a consequence of Blech’s design.
This is because they are examples taken from domains which are not addressed by
Blech. We strongly believe that there cannot be a unique language for all sorts of soft-
ware domains which provides all the necessary abstractions and performance and at
the same time guarantees a safe code generation and deterministic execution. Today’s
complex software products often cover a wide range of domains and for each domain
the appropriate technology should be used. This is reality in every modern desktop
computer: its chipset firmware is written in the appropriate assembly language, operat-
ing system primitives are written in C, native applications often use C++ while additional
desktop apps may be written in C# or Java; finally web applications will use JavaScript
or TypeScript, for example. The same is true for smart phones or tablets. Also we see
this trend in complex cyber-physical systems which cross a spectrum of domains: from
controlling individual valves and electric drives to complex layered control algorithms,
planning and reasoning algorithms and finally communication to other machines or the
internet. Each task needs a suitable technology. Blech is tailored to be one of them.

24

6. Available Technology

The chapter deals with the most obvious question about Blech: why do you invent a new
language instead of simply using XYZ?Of course, embedded systems are developed for
decades and there is a large number of languages already in place. We briefly mention
the most popular ones and highlight where the difference to Blech is.

6.1. The Classics

Hopefully, we have convinced the reader by now that Blech offers constructs and guar-
antees not easily achievable directly in C. It should be clear that our code generation
(that emits C code) does more than just expanding a few extra macros. However C++ is
often called for when C is considered insufficient. We argue that C++ does not achieve
the desired benefits in embedded software. While it offers namespaces and classes that
allow to better separate individual parts of the software, there are no mechanisms that
support the reactive and concurrent nature of the embedded applications considered
here.

Ada explicitly addresses embedded programming by providing custom sized data types
and a strict type system. Furthermore it offers concurrency as a native language mech-
anism. However its concurrent entities called tasks need to be manually orchestrated.
Synchronisation mechanisms have to be correctly used by the programmer to ensure a
dead-lock free and race-condition free execution.

Finally the Rust language offers mechanisms to guarantee a deterministic, race and
dead-lock free execution of concurrent programs. Yet the purpose of concurrency in
Rust is not to decompose a software into concurrent, reactive components as we de-
scribed in Sect. 2.2. It is used to allow passing information (shared state) among asyn-
chronously running threads. Rust accomplishes its goal well but it is a different goal.

6.2. Model-based engineering

Engineers often use models to develop a solution to a problem. In control oriented
domains this model includes the physical behaviour of the plant to be controlled and the
controller itself. The idea of model-based engineering is to reuse that model which was

25

used in the design phase for the subsequent programming phase. Various tools exist
to support this approach.

Simulink is a tool that originally was developed to simulate the behaviour of continuous
systems described by differential equations. Today it also allows to model discrete-time
systems. Special extensions allow to generate executable C code from discrete-time
controller models. Additional extensions provide an automata modelling mechanism.
The automaton outputs its current state which is used by other blocks to enable or dis-
able some of their functionality. Although Simulink allows to specify the behaviour of
blocks using MATLAB script, it is not an IDE in the classical sense: typical tasks of
software development such as refactoring are not directly supported by Simulink.

ASCET is another tool for embedded software development, especially for safety-critical
software in the automotive domain. Originally, ASCET tried to abstract from C source
code by presenting graphical representations of the code to the programmer. Thus in
general it is geared more towards programming and less to modelling and simulating of
physical processes.

Scade is a tool based on the synchronous language Lustre. It provides a graphical
frontend for this data flow oriented language. Automata models may be used similarly
to Simulink. Scade has a certified code generator which makes it a popular tool in
particularly safety critical domains such as avionics.

All three tools are useful in specific areas of development but we feel they do not fit
our goals well. Our goal was to have an imperative programming language—the tool
of an embedded developer—enriched with synchronous control flow statements. This
allows the programmer to describe behaviour in terms of sequences and concurrent
compositions thereof. To better understand this, simply imagine programming our virtual
lock in terms of Moore machines with nodes that solve equations on data streams.

Further more, it is important to stress that not every embedded system is developed
according to a model-based engineering approach. Thus these tools are not applicable
or simply too expensive in many product areas.

In areas where they are applied we see a tendency to use “one tool to rule them all”:
for example we often find Simulink models that not only include the actual controller but
all sorts of software components around it that do not benefit from a physics simulation.
Instead those parts complicate the software development process in terms of reusability,
portability, versioning, maintainability and control over the generated code. We believe
a more viable approach is to write software in an actual programming language such as
Blech. This software can then (automatically) be wrapped inside an Functional Mock-up
Unit to simulate its interaction with a plant model in Simulink or Modelica, for example.

26

6.3. Academic Languages

Synchronous programming as we advocate it has a long history already [2]. However,
it was rooted in engineering disciplines and initially focused on hardware design. From
the software perspective this brought severe limitations: only recently [4] a synchronous
language was enabled to update a mutable variable more than once within a reaction.

SCCharts is an actively developed language. Its programs are represented by a state
chart notation and by a textual description. The key difference with Blech is that in
SCCharts the programmer has to model control flow using states and transitions. Every
operation is expressed as either a side-effect of a transition between two states or as
an action upon entry, exit or reactivation of a state. Blech instead uses the usual control
flow statements known from standard imperative programming and extends the set of
statements to express reactions, synchronous concurrency and preemptions. Thus the
languages feel very different from a practical software engineering perspective.

Lustre is the textual language upon which the Scade tool was built, see above.

Céu has been designed in the tradition of Esterel as an imperative synchronous lan-
guage. But although it allows the concurrent composition of blocks as we do with
cobegin, Céu carries out no causality analysis and simply executes a step in every
block in lexicographical order. While this seems like a little difference it has great im-
pacts on the design of the language and the programs written in it. Céu does not care
whether two branches overwrite each others shared variables. It also has no notion of a
read-write cycle. Moving the branches (in a refactoring step) may change the behaviour
of the Céu program—this cannot happen in Blech.

Despite many crucial differences, clearly the development of the Blech language has
been influenced by all these languages.

27

7. Outlook

Here we briefly give a list of features that we have conceptually developed but not yet
fully implemented in our compiler or other tooling. Our intention is to give an impression
on what other benefits Blech may bring besides what was discussed specifically in this
tutorial.

We invite everyone who is interested to collaborate with us and profit from all of these
possible features! Remember that in open source projects naturally those features
emerge fast which most people are working on.

Further details on the individual topicsmay be found in the language evolution (https://
www.blech-lang.org/docs/language-evolution/) or blog (https://www.blech-lang.
org/blog/) sections of the Blech website. Feel free to get involved in the discussions
on Github issues, Slack, the mailing list, or simply drop us an e-mail.

1. Multi-clock Blech and parallel programming

2. Completing synchronous control flow

• Error handling

• Preemption handling and clean-up code

• Communicating events with signals

3. Completing data types for synchronous programming

• Enumeration types

• References and reference types

• Physical dimensions

• Generic data types

• Strings

4. Module system

5. Testing

• Host versus target development

• Unit testing

28

https://www.blech-lang.org/docs/language-evolution/
https://www.blech-lang.org/docs/language-evolution/
https://www.blech-lang.org/blog/
https://www.blech-lang.org/blog/

• Regression tests

• Software in the loop

6. Tooling

• Debugging

• Build process

29

Bibliography

[1] The SCODE method. https://www.etas.com/en/products/
scode-analyzer-scode-methode.php. Accessed: 2019-09-06.

[2] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The synchronous languages 12 years later. Pro-
ceedings of the IEEE, 91(1):64–83, 2003.

[3] Robert de Simone, Jean-Pierre Talpin, and Dumitru Potop-Butucaru. The syn-
chronous hypothesis and synchronous languages. In Embedded Systems Hand-
book. 2005.

[4] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt,
Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and Partha S.
Roop. Sequentially constructive concurrency - A conservative extension of the
synchronous model of computation. ACM Trans. Embedded Comput. Syst.,
13(4s):144:1–144:26, 2014.

30

https://www.etas.com/en/products/scode-analyzer-scode-methode.php
https://www.etas.com/en/products/scode-analyzer-scode-methode.php

A. Sample solutions

Solution for Section 4.2 The runtime environment is implemented in Mita as fol-
lows.

1 package main;
2 import platforms.xdk110;
3
4 native unchecked fn blc_blech_virtualSafeLock_tick(blc_entry_x: int32,
5 blc_entry_y: int32,
6 blc_entry_z: int32,
7 blc_entry_pressedOne: bool,
8 blc_entry_pressedTwo: bool,
9 blc_entry_mlux: int32,
10 blc_entry_ledLeft: &bool,
11 blc_entry_ledMiddle: &bool,
12 blc_entry_ledRight: &bool) : void
13 header "blech/virtualSafeLock.c";
14
15 native unchecked fn blc_blech_virtualSafeLock_init() : void
16 header "blech/virtualSafeLock.c";
17
18 var globONEhasBeenPressed = false;
19 var globTWOhasBeenPressed = false;
20
21 every button_one.pressed {
22 globONEhasBeenPressed = true;
23 }
24
25 every button_two.pressed {
26 globTWOhasBeenPressed = true;
27 }
28
29 setup led : LED {
30 var right = light_up(color = Red);
31 var middle = light_up(color = Orange);
32 var left = light_up(color = Yellow);
33 }
34
35 every XDK110.startup {
36 blc_blech_virtualSafeLock_init();
37 }
38
39 every 100 milliseconds {
40 var x = accelerometer.x_axis.read();
41 var y = accelerometer.y_axis.read();

31

42 var z = accelerometer.z_axis.read();
43
44 let mlux = light.intensity.read();
45
46 var ledR: bool = led.right.read();
47 var ledM: bool = led.middle.read();
48 var ledL: bool = led.left.read();
49
50 blc_blech_virtualSafeLock_tick(x, y, z,
51 globONEhasBeenPressed, globTWOhasBeenPressed,
52 (mlux as int32),
53 &ledL, &ledM, &ledR
54);
55
56 globONEhasBeenPressed = false;
57 globTWOhasBeenPressed = false;
58
59 led.right.write(ledR);
60 led.middle.write(ledM);
61 led.left.write(ledL);
62 }

The Blech program calls a Blink activity which inverts the status of the LEDs every
0.5 s. The delay is achieved by the CountDown activity which terminates after the given
number of ticks.

1 /// invert LEDs' status values
2 function invertLEDs () (ledLeft: bool, ledMiddle: bool, ledRight: bool)
3 ledRight = not ledMiddle
4 ledLeft = not ledMiddle
5 ledMiddle = not ledMiddle
6 end
7
8 /// When called, delays execution for a given number of ticks
9 activity CountDown (ticks: nat32)
10 var steps = ticks
11 repeat
12 await true
13 steps = steps − 1
14 until steps <= 0 end
15 end
16
17 /// Invert the status of all LEDs every half a second
18 activity Blink () (ledLeft: bool, ledMiddle: bool, ledRight: bool)
19 repeat
20 invertLEDs()(ledLeft, ledMiddle, ledRight)
21 run CountDown(5) // do nothing for 5 ticks = 0.5s
22 end
23 end
24
25 @[EntryPoint]
26 activity XDKBlinking_LEDs (x: int32, y: int32, z: int32, pressedOne: bool,
27 pressedTwo: bool, mlux: int32)
28 (ledLeft: bool, ledMiddle: bool, ledRight: bool)

32

29 run Blink()(ledLeft, ledMiddle, ledRight)
30 end

Solution for Section 4.3 Here is the complete listing, including helper functions pro-
vided as parts of the code skeleton. The crucial activities to be implemented here were
entry, Locked, Unlock, and Success.

1 /**
2 * Global constants
3 ***/
4 const OneG: int32 = 4095 // acceleration value from sensor which we
5 // consider to be at least 1g (gravitation force)
6 const PositionEpsilon: int32 = 400 // 10% epsilon
7 const Cos45xG: int32 = 2895 // cos(45°) * OneG = sin(45°) * OneG
8
9 /// We encode pose information by a prime number encoding
10 /// For example: we represent the XDK standing upright (12 o'clock) as
11 /// NORTH * EXACT = 2 * 11 = 22
12 const UNDEFPOS: nat32 = 1
13
14 const NORTH: nat32 = 2
15 const EAST: nat32 = 3
16 const SOUTH: nat32 = 5
17 const WEST: nat32 = 7
18
19 const EXACT: nat32 = 11
20 const RIGHTOF: nat32 = 13
21 const LEFTOF: nat32 = 17
22
23 /// The maximum length of the secret
24 const MAXLEN: nat32 = 8
25
26
27 /**
28 * Helpers
29 ***/
30 /// invert LEDs' status values
31 function invertLEDs () (ledLeft: bool, ledMiddle: bool, ledRight: bool)
32 ledRight = not ledMiddle
33 ledLeft = not ledMiddle
34 ledMiddle = not ledMiddle
35 end
36
37 /// indicate succesfully entered secret
38 function successToLEDs () (ledLeft: bool, ledMiddle: bool, ledRight: bool)
39 ledRight = true
40 ledLeft = true
41 ledMiddle = true
42 end
43
44 /// true if the device is put face down on the table
45 function faceDownOnTheTable(z: int32, mlux: int32) returns bool

33

46 return mlux < 18000 and z < −900
47 end
48
49 /// value is +− PositionEpsilon around point
50 function around (v: int32, p: int32) returns bool
51 // abs(p−v) <= epsilon
52 if v <= p then
53 return p−v <= PositionEpsilon
54 else
55 return v−p <= PositionEpsilon
56 end
57 end
58
59 function isExact (nearG: int32, nearZero: int32) returns bool
60 return nearG >= OneG − PositionEpsilon
61 and around(nearZero, 0)
62 end
63
64 function isRightOf (opposite: int32, adjacent: int32) returns bool
65 return OneG > opposite
66 and opposite > Cos45xG
67 and PositionEpsilon < adjacent
68 and adjacent < Cos45xG
69 end
70
71 function isLeftOf (opposite: int32, adjacent: int32) returns bool
72 return isRightOf(opposite, −adjacent)
73 end
74
75 /// Determine proximity of given vector to South direction
76 function isSouthAligned (x: int32, y: int32) returns nat32
77 if isExact(x, y) then
78 return EXACT
79 elseif isRightOf(x, y) then
80 return RIGHTOF
81 elseif isLeftOf(x, y) then
82 return LEFTOF
83 else
84 return UNDEFPOS
85 end
86 end
87
88 /// point symmetric to isSouthAligned
89 function isNorthAligned (x: int32, y: int32) returns nat32
90 return isSouthAligned(−x, −y)
91 end
92
93 /// map to isSouthAligned by rotation
94 function isEastAligned (x: int32, y: int32) returns nat32
95 return isSouthAligned(−y, x)
96 end
97
98 /// point symmetric to isEastAligned
99 function isWestAligned (x: int32, y: int32) returns nat32

34

100 return isEastAligned(−x, −y)
101 end
102
103 /// Determines the XDK's pose given the x and y values of the accelerometer
104 function determineOrientation (x: int32, y: int32) returns nat32
105 // check every direction and take the first that gives a defined

alignment
106 var alignment = isNorthAligned(x, y)
107 if UNDEFPOS != alignment then return alignment * NORTH end
108 alignment = isEastAligned(x, y)
109 if UNDEFPOS != alignment then return alignment * EAST end
110 alignment = isSouthAligned(x, y)
111 if UNDEFPOS != alignment then return alignment * SOUTH end
112 alignment = isWestAligned(x, y)
113 if UNDEFPOS != alignment then return alignment * WEST end
114 return UNDEFPOS
115 end
116
117 /// Given a pose sets LED to reflect the alignment
118 function poseToLED (pose: nat32)
119 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
120 ledMiddle = false
121 ledRight = false
122 ledLeft = false
123 if pose % EXACT == 0 then
124 ledMiddle = true
125 elseif pose % RIGHTOF == 0 then
126 ledRight = true
127 elseif pose % LEFTOF == 0 then
128 ledLeft = true
129 end
130 end
131
132 /// Given a pose, tells if it is exactly aligned
133 function poseIsExact (pose: nat32) returns bool
134 return pose % EXACT == 0
135 end
136
137 /**
138 * Misc helper activities
139 ***/
140
141 /// In every tick: given accelerometer sensor readings
142 /// sets LED to reflect the pose
143 activity DisplayOrientation (x: int32, y: int32)
144 (ledLeft: bool, ledMiddle: bool, ledRight: bool,
145 pose: nat32)
146 repeat
147 pose = determineOrientation(x, y)
148 poseToLED(pose)(ledLeft, ledMiddle, ledRight)
149 await true
150 end
151 end
152

35

153 /// When called, delays execution for a given number of ticks
154 activity CountDown (ticks: nat32)
155 var steps = ticks
156 repeat
157 await true
158 steps = steps − 1
159 until steps <= 0 end
160 end
161
162
163 /// Invert the status of all LEDs every half a second
164 activity Blink () (ledLeft: bool, ledMiddle: bool, ledRight: bool)
165 repeat
166 invertLEDs()(ledLeft, ledMiddle, ledRight)
167 run CountDown(5) // do nothing for 5 ticks = 0.5s
168 end
169 end
170
171 /**
172 * Activities (representing modes)
173 ***/
174
175 activity EnterSecret (secret: [MAXLEN]nat32, pose: nat32, pressedOne: bool)

returns bool
176 var idx: nat32 = 0
177 var isOk = true
178 repeat
179 await pressedOne
180 if poseIsExact(pose) then
181 if pose == secret[idx] then
182 idx = idx + 1
183 if idx < MAXLEN and secret[idx] == UNDEFPOS then // guard

array access
184 idx = MAXLEN // skip the rest
185 end
186 else
187 isOk = false
188 end
189 end
190 // else inexact position, do not evaluate
191 until not isOk or idx == MAXLEN end
192 return isOk
193 end
194
195 /// Contains the process of unlocking the virtual lock
196 /// Returns true iff lock has been opened successfully
197 activity Unlock (x: int32, y: int32, pressedOne: bool)
198 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
199 returns bool
200 var secret: [MAXLEN]nat32 = { EXACT * NORTH, EXACT * EAST, EXACT * WEST,
201 EXACT * SOUTH, UNDEFPOS, UNDEFPOS,
202 UNDEFPOS, UNDEFPOS }
203 var pose: nat32
204 var isOk = false

36

205 cobegin weak
206 run DisplayOrientation(x, y)(ledLeft, ledMiddle, ledRight, pose)
207 with
208 run isOk = EnterSecret(secret, pose, pressedOne)
209 end
210 return isOk
211 end
212
213 /// In the locked mode, keep blinking until the user presses button 1
214 activity Locked (pressedOne: bool)
215 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
216 when pressedOne abort // Button 1: start unlocking
217 run Blink()(ledLeft, ledMiddle, ledRight)
218 end
219 end
220
221 /// Lock has been successfully opened
222 /// Determine exclusively pressed button
223 activity Success (pressedOne: bool)
224 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
225 successToLEDs()(ledLeft, ledMiddle, ledRight)
226
227 await pressedOne
228 end
229
230 /**
231 * Program starts here
232 ***/
233 @[EntryPoint]
234 activity XDKUnlocking (x: int32, y: int32, z: int32, pressedOne: bool,
235 pressedTwo: bool, mlux: int32)
236 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
237 repeat
238 // I.
239 run Locked(pressedOne)(ledLeft, ledMiddle, ledRight)
240
241 // II.
242 var successful = false
243 run successful = Unlock(x, y, pressedOne)
244 (ledLeft, ledMiddle, ledRight)
245
246 if successful then
247 // III.
248 run Success(pressedOne)(ledLeft, ledMiddle, ledRight)
249 end
250 end
251 end

Solution for Section 4.4 In the main activity we wrap the entire contents of the loop
inside an abort statement. Thus no matter where the program resumes to perform a
reaction, if the user made the “reset gesture” (faceDownToTable) then the control flow

37

jumps to the end of the abort in the main activity, and the loop brings us back to the
initial mode.

1 /// true if the device is put face down on the table
2 function faceDownOnTheTable(z: int32, mlux: int32) returns bool
3 return mlux < 18000 and z < −900
4 end
5
6 @[EntryPoint]
7 activity XDKCancellation(x: int32, y: int32, z: int32, pressedOne: bool,
8 pressedTwo: bool, mlux: int32)
9 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
10 repeat
11 // abort when the device is put face down on the table
12 when faceDownOnTheTable(z, mlux) abort
13 // I.
14 run Locked(pressedOne)(ledLeft, ledMiddle, ledRight)
15
16 // II.
17 var successful = false
18 run successful = Unlock(x, y, pressedOne)
19 (ledLeft, ledMiddle, ledRight)
20
21 if successful then
22 // III.
23 run Success(pressedOne)(ledLeft, ledMiddle, ledRight)
24 end
25 end
26 end
27 end

Solution for Section 4.5 We add a new activity Programming that lets the user enter
a new secret. It uses EnterNewSecret as a helper.

1 activity EnterNewSecret (pose: nat32, pressedOne: bool, pressedTwo: bool)
2 (newSecret: [MAXLEN]nat32) returns bool
3 var idx: nat32 = 0
4 cobegin weak
5 repeat
6 await pressedOne and not pressedTwo
7 if poseIsExact(pose) then
8 newSecret[idx] = pose
9 idx = idx + 1
10 end
11 // else inexact position, do not evaluate
12 until idx == MAXLEN end
13 with weak
14 await pressedTwo and not pressedOne // finish programming
15 end
16 return idx > 0 // at least one position has been entered
17 end
18

38

19 /// The process of setting a new secret in the virtual lock
20 activity Programming (x: int32, y: int32, pressedOne: bool, pressedTwo: bool)
21 (secret: [MAXLEN]nat32, ledLeft: bool, ledMiddle: bool,

ledRight: bool)
22 returns bool
23 var pose: nat32
24 var newSecret: [MAXLEN]nat32 = { UNDEFPOS, UNDEFPOS, UNDEFPOS, UNDEFPOS,
25 UNDEFPOS, UNDEFPOS, UNDEFPOS, UNDEFPOS }
26 var isOk = false
27
28 cobegin weak
29 run DisplayOrientation(x, y)(ledLeft, ledMiddle, ledRight, pose)
30 with
31 run isOk = EnterNewSecret(pose, pressedOne, pressedTwo)(newSecret)
32 end
33 if isOk then
34 secret = newSecret
35 end
36 return isOk
37 end

The Success activity is extended to distinguish whether the user wants to simply close
the lock or to set a new secret.

1 /// Lock has been successfully opened
2 /// Determine exclusively pressed button
3 activity Success (pressedOne: bool, pressedTwo: bool)
4 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
5 returns bool
6 successToLEDs()(ledLeft, ledMiddle, ledRight)
7
8 await pressedOne and not pressedTwo
9 or pressedTwo and not pressedOne //exactly one button is pressed
10
11 if pressedTwo then
12 return true // indicate that we want to reprogram the secret
13 else
14 return false // Button 1 leads back to start
15 end
16 end

The Unlock activity is changed to take the secret as input parameter instead of defining
it as a local variable.

1 activity Unlock (secret: [MAXLEN]nat32, x: int32, y: int32, pressedOne:bool)
2 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
3 returns bool
4 var pose: nat32
5 var isOk = false
6 cobegin weak
7 run DisplayOrientation(x, y)(ledLeft, ledMiddle, ledRight, pose)
8 with
9 run isOk = EnterSecret(secret, pose, pressedOne)
10 end

39

11 return isOk
12 end

We adapt the main activity accordingly.
1 @[EntryPoint]
2 activity XDKUserDefinedCode (x: int32, y: int32, z: int32, pressedOne: bool,
3 pressedTwo: bool, mlux: int32)
4 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
5 var secret: [MAXLEN]nat32 = { EXACT * NORTH, EXACT * EAST, EXACT * WEST,
6 EXACT * SOUTH, UNDEFPOS, UNDEFPOS,
7 UNDEFPOS, UNDEFPOS }
8 repeat
9 // abort when the device is put face down on the table
10 when faceDownOnTheTable(z, mlux) abort
11 // I.
12 run Locked(pressedOne)(ledLeft, ledMiddle, ledRight)
13
14 // II.
15 var successful = false
16 run successful = Unlock(secret, x, y, pressedOne)
17 (ledLeft, ledMiddle, ledRight)
18 if successful then
19
20 // III.
21 var wantReprogramming = false
22 run wantReprogramming = Success(pressedOne, pressedTwo)
23 (ledLeft, ledMiddle, ledRight)
24 if wantReprogramming then
25
26 // IV.
27 run _ = Programming(x, y, pressedOne, pressedTwo)
28 (secret, ledLeft, ledMiddle, ledRight)
29 end
30 end
31 end
32 end
33 end

Solution for Section 4.6 All we need to do is prevent early termination. Thus keep
reading up to 8 positions. Return the value of hasUnlockingSucceeded only when button
two is pressed. However this boolean variable is true only when the last correct pose
has been entered and nothing else.

1 activity EnterFullSecret (secret: [MAXLEN]nat32, pose: nat32,
2 pressedOne: bool, pressedTwo: bool) returns bool
3 var idx: nat32 = 0
4 var codeOk = true
5 cobegin weak
6 repeat
7 await pressedOne and not pressedTwo
8 if poseIsExact(pose) then

40

9 if idx >= MAXLEN then // entered code to long
10 codeOk = false
11 elseif secret[idx] == UNDEFPOS then // entered code too long
12 codeOk = false
13 elseif pose != secret[idx] then // entered pose incorrect
14 codeOk = false
15 end
16 idx = idx + 1
17 // else inexact position, do not evaluate
18 end
19 end
20 with
21 await pressedTwo and not pressedOne
22 end
23 if idx >= MAXLEN or secret[idx] == UNDEFPOS then // enough poses entered
24 return codeOk
25 else
26 return false
27 end
28 end
29
30 /// Contains the process of unlocking the virtual lock
31 /// Returns true iff lock has been opened successfully
32 activity Unlock (secret: [MAXLEN]nat32, x: int32, y: int32,
33 pressedOne: bool, pressedTwo: bool)
34 (ledLeft: bool, ledMiddle: bool, ledRight: bool)
35 returns bool
36
37 var pose: nat32
38 var isOk = false
39 cobegin weak
40 run DisplayOrientation(x, y)(ledLeft, ledMiddle, ledRight, pose)
41 with
42 run isOk = EnterFullSecret(secret, pose, pressedOne, pressedTwo)
43 end
44 return isOk
45 end

41

	Embedded Software
	Challenges
	Resource constraints
	Divide and conquer in embedded systems
	Mode switching behaviour
	Software is soft

	Synchronous Programming
	Hands on Blech
	Preparation
	Blinking LEDs
	Baseline Specification – Unlocking the virtual lock
	Cancellation
	Full Specification – User Defined Secret Code
	Bonus: a Change Request Comes in…
	Retrospect

	Scope of Blech
	In scope
	Out of scope

	Available Technology
	The Classics
	Model-based engineering
	Academic Languages

	Outlook
	Sample solutions

